PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A note on optical materials for photolithography applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Optical lithography or photolithography is well-established optical tool for patterning of substrates, layers or photonic crystals. Therefore, the materials involved in these processes play an important role, especially for the possibility of their further advancements and optimisation. In this review article, we discuss on the role and significance of photoresist materials from various perspectives like their performance in photonic applications and their dependence on various physical and chemical parameters. Further, several emerging now two-dimensional materials like graphene has also been discussed from photonic point of view. We aim to give a short overview of recent developments of such materials in this field.
PL
Fotolitografia jest dobrze znanym procesem pozwalającym na tworzenie wzorów na podłożach, warstwach czy kryształach fotonicznych. W związku z tym materiały wykorzystywane w tym procesie pełnią istotną rolę, zwłaszcza ze względu na dalszy możliwy rozwój dziedziny oraz optymalizację procesu. W tym artykule przeglądowym omawiamy rolę i znaczenie fotorezystu z różnych perspektyw, np. jego wydajność w zastosowaniach fotonicznych czy zależność od różnych parametrów fizycznych i chemicznych. Ponadto, omawiamy wiele powstających obecnie dwuwymiarowych materiałów, jak grafen, z punktu widzenia fotoniki. Naszym celem jest przedstawienie krótkiego przeglądu ostatnich osiągnięć w dziedzinie tego typu materiałów wykorzystywanych w fotolitografii.
Rocznik
Tom
Strony
1--41
Opis fizyczny
Bibliogr. 63 poz., rys., tab.
Twórcy
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences
  • Institute of Fundamental Technological Research, Polish Academy of Sciences
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences
Bibliografia
  • 1. B.J. Zeng, J.Z. Huang, R.W. Ni, N.N. Yu, W. Wei, Y.Z. Hu, Z. Li and X.S. Miao. Metallic resist for phase-change lithography. Scientific Reports, 4: 5300-1-7, 2014.
  • 2. H. Eom, J-H Kim, J. Hur, T-S Kim, S-K Sung, J-H Choi, E. Lee, J-H Jeong and I. Park. Nanostructured polymer substrate for flexible and mechanically robust metal electrodes by nanoimprint lithography. ACS Appl. Mater. Interfaces, 7 (45): 25171-25179, 2015.
  • 3. I. Bergmair. B. Dastmalchi, M. Bergmair, A. Saeed, W. Hilber, G. Hesser, C. Helgert, E. Pshenay-Severin, T. Pertsch, E.B. Kley, U. Hubner, N.H. Shen, R. Penciu, M. Kafesaki, C.M. Soukoulis, K. Hingerl, M. Muehlberger and R. Schoeftner. Single and multilayer metamaterials fabricated by nanoimprint lithography, Nanotechnology, 22 (32): 325301-325306, 2011.
  • 4. K.S. Lee, C. Andraud, K. Tamada, K. Sokolov, K.T. Kotz and G. Zheng, Feature issue introduction: biophotonic materials and applications, Biomed Opt Express 7 (5): 2078-2081, 2016.
  • 5. C. Mack. Fundamental principles of optical lithography: the science of microfabrication. John Wiley & Sons Ltd, 2007.
  • 6. G. Cao and Y Wang. Nanostructures and Nanomaterials; Synthesis, Properties and Applications. Imperial College Press: London, 2004.
  • 7. K. Suziki, S. Matsui and Y. Ochiai. Sub-Half-Micron Lithography for ULSIs. Cambridge University Press: Cambridge, 2000.
  • 8. D. Brambley, B. Martin and P.D. Prewett. Microlithography: An overview, Adv. Mater. Opt. Electron 4 (2): 55-74, 1994.
  • 9. M. Gentili, C. Giovannella and S. Selci. Nanolithography: A Borderland between STM, EB, IB and X-Ray Lithographies. Kluwer, Dordrecht: Netherlands, 1993.
  • 10. R.O. Lussow. Photoresist materials and applications. J. Vac. Sci. Technol. 6 (1):18-24, 1969.
  • 11. A. Sarangan. Nanofabrication: Principles to Laboratory Practice. CRC Press, 2016.
  • 12. W.V. Pink, Western Electric Engr. 11: 27, 1967.
  • 13. Photosensitive Resists for Industry, Industrial Data Book, Eastman Kodak Co., Rochester N.Y. 1962.
  • 14. K. Nakamura, Photopolymers; Photoresist materials, Processes and Applications, CRC Press, 2014.
  • 15. J. Liu, L. He, L. Wang, Y. Man, L. Huang, Z. Xu, D. Ge, J. Li, C. Liu and L. Wang. Significant enhancement of the adhesion between metal films and polymer substrates by UV-ozone surface modification in nanoscale, ACS Appl. Mater. Interfaces 8 (44): 30576-30582, 2016.
  • 16. D. Roy, P.K. Basu and S.V. Eswaran. Photoresist for microlithography. Resonance 7(7): 44-53, 2002.
  • 17. R.F. Kelly. Proc. Kodak Seminar on Microminiaturization. June 1965, 38.
  • 18. K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, Y. Zhang, S.A. Dubonos, I. Grigorieva and A. Firsov. Electric field effect in atomically thin carbon films Science 306 (5696): 666-669, 2004.
  • 19. L. Song, L. Ci, H. Lu, P.B. Sorokin, C. Jin, J. Ni, A.G. Kvashnin, D.G. Kvashnin, J. Lou, B.I. Yakobson and P.M. Ajayan. Large scale growth and characterization of atomic hexagonal boron nitride layers Nano Lett. 10(8): 3209-3215, 2010.
  • 20. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti and A. Kis. Single-layer MoS2 transistors Nat. Nanotechnol. 6 (3): 147-150, 2011.
  • 21. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman and M.S. Strano. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7 (11): 699-712, 2012.
  • 22. H. Fang, S. Chuang, T.C. Chang, K. Takei, T. Takahashi and A. Javey. Highperformance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 12 (7): 3788-3792, 2012.
  • 23. V.Y. Aristov, G. Urbanik, K. Kummer, D.V. Vyalikh, O.V. Molodtsova, A.B. Preobrajenski, A.A. Zakharov, C. Hess, T. Hänke, B. Büchner, I. Vobornik, J. Fujii, G. Panaccione, Y.A. Ossipyan and M. Knupfer. Graphene synthesis on cubic SiC/Si wafers perspectives for mass production of graphene-based electronic devices. Nano Lett. 10(3): 992-995, 2010.
  • 24. Y. Lee, S. Bae, H. Jang, S. Jang, S.-E. Zhu, S.H. Sim, Y.I. Song, B.H.Hong and J.-H. Ahn. Wafer scale synthesis and transfer of graphene films. Nano Lett. 10(2): 490-493, 2010.
  • 25. J.K. Huang, J. Pu, C.L. Hsu, M.H. Chiu, Z.Y. Juang, Y.H. Chang, W.H. Chang, Y. Iwasa, T. Takenobu and L.J. Li. Large-area synthesis of highly crystalline WSe2 mono layers and device applications. ACS Nano 8 (1): 923-930, 2014.
  • 26. Y.C. Lin, W. Zhang, J.K. Huang, K.K. Liu, Y.H. Lee, C.T. Liang, C.W. Chu and L.J. Li. Wafer scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale 4(20): 6637-6641, 2012.
  • 27. Y.-H. Lee, X.-Q. Zhang,W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J.T.-W. Wang, C.-S. Chang, L.-J. Li and T.-W. Lin. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24 (17): 2320-2325, 2012.
  • 28. A. Tarasov, P.M. Campbell, M.Y. Tsai, Z.R. Hesabi, J. Feirer, S. Graham,W.J. Ready and E.M. Vogel. Highly uniform trilayer molybdenum disulfide for waferscale device fabrication. Adv. Funct. Mater. 24 (40): 6389-6400, 2014.
  • 29. D. Teweldebrhan and A.A. Balandin. Modification of graphene properties due to electron-beam irradiation. Appl. Phys. Lett. 94 (1): 013101-03, 2009.
  • 30. R. Zan, Q.M. Ramasse, R. Jalil, T. Georgiou, U. Bangert and K.S. Novoselov. Control of radiation damage in MoS2 by graphene encapsulation. ACS Nano 7 (11): 10167-10174, 2013.
  • 31. A. Garcia, A.M. Raya, M.M. Mariscal, R. Esparza, M. Herrera, S.I. Molina, G. Scavello, P.L. Galindo, M. Jose-Yacaman and A. Ponce. Analysis of electron beam damage of exfoliated MoS2 sheets and quantitative HAADF-STEM imaging. Ultramicroscopy 146: 33-38, 2014.
  • 32. I. Childres, L.A. Jauregui, M. Foxe, J. Tian, R. Jalilian, I. Jovanovic and Y.P. Chen. Effect of electron-beam irradiation on graphene field effect devices. Appl. Phys. Lett. 97 (17): 173109-01-03, 2010.
  • 33. C. Durand, X. Zhang, J. Fowlkes, S. Najmaei, J. Lou and A.-P. Li. Defectmediated transport and electronic irradiation effect in individual domains of CVDgrown monolayer MoS2. J. Vac. Sci. Technol. B 33 (2): 02B110-1-7, 2015.
  • 34. M.M. Benameur, B. Radisavljevic, J.S. Heron, S. Sahoo, H. Berger and A. Kis, Visibility of dichalcogenide nanolayers, Nanotechnology 22 (12):125706-1-5, 2012.
  • 35. R. Zhang, T. Chen, A. Bunting and R. Cheung. Optical lithography technique for the fabrication of devices from mechanically exfoliated two-dimensional materials. Microelectronic Engineering 154: 62-68, 2016.
  • 36. M.T. Pettes, I. Jo, Z. Yao and L. Shi. Influence of polymeric residue on the thermal conductivity of suspended bilayer graphene. Nano Letters 11(3):1195-1200, 2011.
  • 37. J.W. Suk, W.H. Lee, J. Lee, H. Chou, R.D. Piner, Y. Hao, D. Akinwande and R.S. Ruoff. Enhancement of electrical properties of graphene grown by chemical vapour deposition via controlling the effects of polymer residue. Nano Letters 13(4): 1462-1467, 2013.
  • 38. K. Shoorideh and C.O. Chui, On the origin of enhanced sensitivity in nanoscale FET based biosensors. Proc. Natl. Acad. Sci. USA 111(14) 5111-5116, 2014.
  • 39. J. Fan, J. Michalik, L. Casado, S. Roddaro, M. Ibarra and J. De Teresa. Investigation of the influence on graphene by using electron-beam and photolithography. Solid State Commun. 151 (21): 1574-1578, 2011.
  • 40. K. Zhang, Y. Feng, F. Wang, Z. Yang and J. Wang. Two-dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications. J. Mater. Chem. C. 5 (46):11992-12022, 2017.
  • 41. M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh and H. Zhang. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem 5 (4): 263-275, 2013.
  • 42. H.O. Churchill and P. Jarillo-Herrero. Two-dimensional crystals: Phosphorus joins the family. Nat. Nanotechnol 9(5):330-331, 2014.
  • 43. H. Liu, Y. Du, Y. Deng and P.D. Ye. Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44(9): 2732-2743, 2015.
  • 44. H. Zhao, Q. Guo, F. Xia and H. Wang. Two dimensional material for nanophotonics application. Nanophotonics 4(1): 128-142, 2015.
  • 45. C.M. Soukoulis and M. Wegener. Past achievements and future challenges in the development of three dimensional photonic metamaterials. Nat. Photonics 5(9): 523-530, 2011.
  • 46. M. Chen, H. Rokni, W. Lu and X. Liang. Scaling behaviour of nanoprinting lithography for producing nanostructures of molybdenum disulphide. Microsyst. Nanoeng. 3:17053-1-8, 2017.
  • 47. S. Okazaki. Resolution limits of optical lithography. J. Vac. Sci. Techol. B 9(6) 2829-2833, 1991.
  • 48. J. L. Lenhart, D. Fischer, S. Sambasivan, E. K. Lin, W.-L. Wu, D. J. Guerrero, Y. Wang and R. Puligadda. Understanding deviations in lithographic patterns near interfaces: Characterization of bottom anti-reflective coatings (BARC) and the BARC–resist interface. Appl. Surf. Sci. 253(9): 4166–4175, 2007.
  • 49. A. Roszkiewicz and W. Nasalski, Transmission and reflection properties of twodimensional finite metal crystals, Eur. Phys. J. D 71 (182):1-12, 2017.
  • 50. D. Shrekenhamer, J. A. Miragliotta, M. Brinkley, K. Fan, F. Peng, J. A. Montoya, S. Gauza, S.-T. Wu and W. J. Padilla. Electronic and Thermally Tunable Infrared Metamaterial Absorbers. Proc. of SPIE 9918 99180U-1 (2016).
  • 51. V. Caligiuri, L. De Sio, L. Petti, R. Capasso, M. Rippa, M. G. Maglione, N. Tabiryan and C. Umeton. Electro-/all-optical light extraction in gold photonic quasi-crystals layered with photosensitive liquid crystals. Adv. Optical Mater. 2 (10): 950-955, 2014.
  • 52. Yu. V. Bludov, M. I. Vasilevskiy and N. M. R. Peres. Magnetic field assisted transmission of THz waves through a graphene layer combined with a periodically perforated metallic film. Phys. Rev. B 97(4): 045433-1-20, 2018.
  • 53. T. Ueda, F. Kohsaka, D. Yamazaki and T. Iino. Quartz crystal micromechanical devices. Proc. 3rd Int. Conf. on Solid-State Sensors and Actuators, Transducers ’85 (Tokyo, 1985) pp 113–6.
  • 54. E. Eernisse, R.W. Ward and R.B. Wiggins. A survey of quartz bulk resonator sensor technologies. IEEE Trans. Ultrason. Ferroelectr. Frequency Control UFFC-35 (1988) 323–30.
  • 55. J.S. Danel and G. Delapierre. Quartz: a material for microdevices. J. Micromech. Microeng. 1(4):187–98, 1991.
  • 56. M. J. Madou. Fundamentals of Microfabrication: The Science of Miniaturization Second Edition, (2002), CRC Press.
  • 57. J. He, M. Feng, Y. Zhong, J. Wang, R. Zhou, H. Gao, Y. Zhou, Q. Sun, J. Liu, Y. Huang, S. Zhang, H. Wang, M. Ikeda and H. Yang. On-wafer fabrication of cavity mirrors for InGaN-based laser diode grown on Si. Sci. Rep. 8:(7922) 1-8, 2018.
  • 58. Y. Xing, J. Zhang, M. A. Gosalvez, H. Zhang, Y. Li and S. Zhou. The Maximum Positive Curvature Recognition Method to Determine Etch Profiles in Wet Etching of Quartz on AT and BT Cuts. J. Microelectromec S. 27(4): 730–738, 2018.
  • 59. K. Hjort, G. Thornell, R. Spohr and J. –A. Schweitz (n.d.). Heavy ion induced etch anisotropy in single crystalline quartz. Proceedings of Ninth International Workshop on Micro Electromechanical Systems, 267-271, 1996.
  • 60. P. Rangsten, C. Hedlund, I. Katardjiev and Y. Backlund. Etch rates of crystallographic planes in Z-cut quartz-experiments and simulation. J. Micromech. Microeng. 8 (1): 1-6, 1998.
  • 61. S. Azimi, J. Song, Z.Y. Dang, H.D. Liang and M.B.H. Breese. Three dimensional silicon micromachining. J. Micromech. Microeng. 22(11): 113001-8, 2012.
  • 62. C. Hedlund, U. Lindberg, U. Bucht and J. Söderkvist. Anisotropic etching of Zcut quartz. J. Micromech. Microeng. 3 (2): 65–73, 1993.
  • 63. H. Zhang, Y. Xing, J. Zhang and Y. Li. The microscopic activation energy etching mechanism in anisotropic wet etching of quartz. IEEE Micro Electro Mechanical Systems (MEMS), (2018) 471-474
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6fe24c4-55e0-478e-bda0-6b641c2aa4ac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.