PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Initial conditions for a transient steady-state induction machine simulation based on time-harmonic and multi-harmonic solutions

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of the author’s research on effectively determining the initial conditions for the time-stepping model of a high-speed inverter-driven induction machine. The classical time-harmonic and multi-harmonic models based on the multidimensional effective magnetic permeability were used and compared as a preconditioner for the time-stepping model to speed up the steady-state solution. The carried-out simulation experiment proved that using both approaches radically accelerates computations. Furthermore, it has been shown that the multi-harmonic model is much more effective for problems with strong harmonic effects.
Rocznik
Strony
361--373
Opis fizyczny
Bibliogr. 18 poz., fot., rys., tab., wykr., wz.
Twórcy
  • Opole University of Technology, Faculty of Electrical Engineering, Automatic Control and Informatics 45-758 Opole, ul. Prószkowska 76
Bibliografia
  • [1] Bianchi N., Electrical Machine Analysis Using Finite Elements, CRC Press (2005).
  • [2] Arkkio A., Analysis of induction motor based on the numerical solution of the magnetic field and circuit equations, PhD Thesis, Helsinki University of Technology, Espoo (1987).
  • [3] Garbiec T., Jagiela M., Kulik M., Application of Nonlinear Complex Polyharmonic Finite-Element Models of High-Speed Solid-Rotor Induction Motors, IEEE Transaction on Magnetics, no. 56, no. 7515304 (2020), DOI: 10.1109/TMAG.2019.2953987.
  • [4] Garbiec T., Jagiela M., Accounting for Slot Harmonics and Nonsinusoidal Unbalanced Voltage Supply in High-Speed Solid-Rotor Induction Motor Using Complex Multi-Harmonic Finite Element Analysis, Energies, vol. 14, no. 5404 (2021), DOI: 10.3390/en14175404.
  • [5] Nell M., Lenz J., Hamayer K., Scaling laws for the FE solutions of induction machines, Archives of Electrical Engineering, vol. 68, no. 3, pp. 667–695 (2019), DOI: 10.24425/aee.2019.129350.
  • [6] Di C., Petrov I., Pyrhönen J.J., Chen J., Accelerating the Time-Stepping Finite-Element Analysis of Induction Machines in Transient-Magnetic Solutions, IEEE Access, vol. 7, pp. 122251–122260 (2019), DOI: 10.1109/ACCESS.2019.2938269.
  • [7] Keränen J., Ponomarev P., Pippuri J., Råback P., Lyly M., Westerlund J., Parallel performance of multi-slice finite-element modelling of skewed electrical machines, IEEE Transactions on Magnetics, vol. 53, no. 6, 7201204 (2017), DOI: 10.1109/TMAG.2017.2653421.
  • [8] Li S., Hofmann H., Numerically efficient steady-state finite element analysis of magnetically saturated electromechanical devices using a shooting-Newton/GMRES approach, IEEE Transactions on Magnetics, vol. 39, no. 6, pp. 3481–3485 (2003), DOI: 10.1109/TMAG.2003.819471.
  • [9] Takahashi Y., Tokumasu T., Kameari A., Kaimori H., Fujita M., Iwashita T., Wakao S., Convergence acceleration of time-periodic electromagnetic field analysis by the singularity decomposition-explicit error correction method, IEEE Transactions on Magnetics, vol. 46, no. 8, pp. 2947–2950 (2010), DOI: 10.1109/TMAG.2010.2043721.
  • [10] Takahashi Y., Tokumasu T., Fujita M., Wakao S., Koji F., Ishihara Y., Comparison Between Fast Steady State Analysis Methods for Time-Periodic Nonlinear Magnetic Field Problems, IEEE Transactions on Magnetics, vol. 48, no. 2, pp. 235–238 (2012), DOI: 10.1109/TMAG.2011.2172579.
  • [11] Bíró O., Preis K., An efficient time domain method for nonlinear periodic eddy current problems, IEEE Transaction on Magnetics, vol. 42, no. 4, pp. 695–698 (2006), DOI: 10.1109/TMAG.2006.871666.
  • [12] Takahashi Y., Iwashita T., Nakashima H., Tokumasu T., Fujita M., Wakao S., Fujiwara K., Ishihara Y., Parallel Time-Periodic Finite-Element Method for Steady-State Analysis of Rotating Machines, IEEE Transaction on Magnetics, vol. 48, no. 2, pp. 1019–1022 (2012), DOI: 10.1109/TMAG.2011.2171923.
  • [13] von Pfingsten G., Hameyer K., Highly efficient approach to the simulation of variable-speed induction motor drives, IET Science, Measurement Technology, vol. 11, no. 6, pp. 793–801 (2017), DOI: https://doi.org/10.1049/iet-smt.2017.0152.
  • [14] Mertens R., Belmans R., Hamayer K., Combined Time-Harmonic – Transient Approach to Calculate the Steady-State Behaviour of Induction Machine, Proceedings of IEEE International Electric Machines and Drives Conference (IEMDC), Seattle, Washington, USA (1999).
  • [15] Huppunen J., High-speed solid-rotor induction machine – electromagnetic calculation and design, PhD Thesis, Helsinki University of Technology, Lappeenranta (2004), DOI: http://lutpub.lut.fi/handle/ 10024/36551.
  • [16] Aho T., Nerg J., Pyrhönen J., Analyzing the effect of the rotor coating on the rotor losses of medium speed solid-rotor induction motor, Proceedings of International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM 2006), Taormina, Italy, pp. 103–107 (2006), DOI: 10.1109/SPEEDAM.2006.1649752.
  • [17] Geuzaine C., Remacle J.-F., Gmsh: a three-dimensional finite element mesh generator with built-in preand post-processing facilities, International Journal for Numerical Methods in Engineering, vol. 79, no. 11, pp. 1309–1331(2009), DOI: https://doi.org/10.1002/nme.2579.
  • [18] De Gersem H., Hamayer K., Air-Gap Flux Splitting for the Time-Harmonic Finite-Element Simulation of Single-Phase Induction Machines, IEEE Transaction on Magnetics, vol. 38, no. 2, pp. 1221–1224 (2002), DOI: 10.1109/20.996312.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6fa95a7-315f-4004-939a-395c12c5f806
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.