PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cultivation systems for winter wheat (Triticum aestivum L.) and soil susceptibility to erosion

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of the research was to check whether the reduced cultivation system reduces the risk of soil water erosion compared to traditional ploughing. One of the good parameters (indicators) to check is the examination of soil properties, mainly the content of readily dispersible clay (RDC), bulk density (BD), and soil water content (SWC). The soil organic carbon (SOC) content plays an important role in the soil erosion process. The field experiment on silt loamy soils was carried out for 12 years on an area of 1 ha, arranged as a random block with four repetitions, a total of eight plots per year. Two tillage systems were used: traditional (TT - inversion) and reduced (RT - without inversion). Fertiliser doses were the same for both cultivation systems. Analyses included determinations of the available forms of K, P, and Mg, as well as pH, SOC, SWC, BD, and RDC. The experimental results indicate that the soil under reduced RT cultivation was characterised by better chemical and physical properties compared to the soil under traditional TT cultivation. RT cultivation reduces the risk of soil erosion without reducing the yield of winter wheat. The 12-year study showed that, RT tillage reduces the risk of soil erosion without reducing winter wheat yields. Lower RDC values were determined under RT tillage, indicating a reduction in the content of easily dispersible clay, reducing the risk of soil erosion.
Wydawca
Rocznik
Tom
Strony
29--36
Opis fizyczny
Bibliogr. 53 poz., tab., wykr.
Twórcy
  • University of Rzeszów, Department of Soil Science, Environmental Chemistry and Hydrology, 8B Zelwerowicza St, 35-601, Rzeszów, Poland
  • University of Rzeszów, Department of Soil Science, Environmental Chemistry and Hydrology, 8B Zelwerowicza St, 35-601, Rzeszów, Poland
Bibliografia
  • Balen van, D. et al. (2023) “Crop yield response to long-term reduced tillage in a conventional and organic farming system on a sandy loam soil,” Soil & Tillage Research, 225, 105553. Available at: https://doi.org/10.1016/j.still.2022.105553.
  • Cannell, R.Q. et al. (1985) “Effects of waterlogging on soil aeration and on root and shoot growth and yield of winter oats (Avena sativa L.),” Plant and Soil, 85(3), pp. 361–373. Available at: https://doi.org/10.1007/bf02220191.
  • Czyż, E.A. and Dexter, A.R. (2008) “Soil physical properties under winter wheat grown with different tillage systems at selected locations,” International Agrophysics, 22, pp. 191–200.
  • Czyż, E.A. and Dexter, A.R. (2009) “Soil physical properties as affected by traditional, reduced and no-tillage for winter wheat,” International Agrophysics, 23, pp. 319–326.
  • Czyż, E.A. and Dexter, A.R. (2015) “Mechanical dispersion of clay from soil into water: readily-dispersed and spontaneously-dispersed clay,” International Agrophysics, 29(1), pp. 31–37. Available at: https://doi.org/10.1515/intag-2015-0007.
  • Czyż, E.A. et al. (2017) “Clay-organic complexes in a Polish loess soil,” International Agrophysics, 31(3), pp. 447–452. Available at: https://doi.org/10.1515/intag-2016-0054.
  • Dexter, A.R. and Czyż, E.A. (2007) “Applications of S-theory in the study of soil physical degradation and its consequences,” Land Degradation & Development, 18(4), pp. 369–381. Available at: https://doi.org/10.1002/ldr.779.
  • Dexter, A.R. et al. (2008) “Complexed organic matter controls soil physical properties,” Geoderma, 144(3–4), pp. 620–627. Available at: https://doi.org/10.1016/j.geoderma.2008.01.022.
  • Dexter, A.R. et al. (2011) “Clay dispersion from soil as a function of antecedent water potential,” Soil Science Society of America Journal, 75(2), pp. 444–455. Available at: https://doi.org/10.2136/sssaj2010.0088.
  • Ditzler, C., Scheffe, K. and Monger, H.C. (eds.) (2017) Soil survey manual. USDA Handbook 18, Washington, DC: Government Printing Office.
  • Eurostat (2021) Eurostat regional yearbook. Luxembourg: Office of the European Union. https://ec.europa.eu/eurostat/documents/15234730/15241943/KS-HA-21-001-EN-N.pdf/202462e1-b947-a2c5-6da2-c3d999018134?t=1667396809671 (Accessed: January 15, 2024).
  • FAO (2015) Status of the world’s soil resources: Main report. Rome: Food and Agriculture Organization of the United Nations. Available at: https://openknowledge.fao.org/server/api/core/bit-streams/6ec24d75-19bd-4f1f-b1c5-5becf50d0871/content (Accessed: January 15, 2024).
  • Franzluebbers, A.J. (2002) “Soil organic matter stratification ratio as an indicator of soil quality,” Soil & Tillage Research, 66(2), pp. 95–106. Available at: https://doi.org/10.1016/s0167-1987(02)00018-1.
  • Gajda, A.M., Czyż, E.A. and Dexter, A.R. (2016) “Effects of long-term use of different farming systems on some physical, chemical and microbiological parameters of soil quality,” International Agrophysics, 30(2), pp. 165–172. Available at: https://doi.org/10.1515/intag-2015-0081.
  • Gajda, A.M. et al. (2017) “Effects of long-term tillage practices on the quality of soil under winter wheat,” Plant, Soil and Environment, 63(5), pp. 236–242. Available at: https://doi.org/10.17221/223/2017-pse.
  • Gajri, P.R., Arora, V.K. and Prihar, S.S. (2002) Tillage for sustainable cropping. New York: Food Products Press.
  • ISO 10390:2005. Soil quality — Determination of pH. Geneva: International Organization for Standardization.
  • Józefaciuk, A. and Józefaciuk, C. (1996) Erozja i melioracje przeciwerozyjne [Erosion and anti-erosion meliorations]. Warszawa: PIOŚ.
  • Lal, R. (2001) “Soil degradation by erosion,” Land Degradation & Development, 12(6), pp. 519–539. Available at: https://doi.org/10.1002/ldr.472.
  • Lal, R. (2020) “Soil organic matter and water retention,” Agronomy Journal, 112(5), pp. 3265–3277. Available at: https://doi.org/10.1002/agj2.20282.
  • Li, Y. et al. (2019) “Residue retention and minimum tillage improve physical environment of the soil in croplands: A global metaanalysis,” Soil & Tillage Research, 194, 104292. Available at: https://doi.org/10.1016/j.still.2019.06.009.
  • Lima, P.L.T. et al. (2018) “Relationship among crop systems, soil cover, and water erosion on a typic hapludox,” Revista Brasileira de Ciência do Solo, 42. Available at: https://doi.org/10.1590/18069657rbcs20170081.
  • Lipiec, J. (2021) “Soils and climate change,” in 13th International Conference on Agrophysics: Agriculture in changing climate – Book of abstracts. Lublin: Institute of Agrophysics, Polish Academy of Sciences, p. 30. Available at: https://www.ipan.lublin.pl/wp-content/uploads/2021/12/ICA-2021-Book-of-Abstracts.pdf (Accessed: November 15, 2021).
  • Lobsey, C.R. and Rossel, R.A. (2016) “Sensing of soil bulk density for more accurate carbon accounting,” European Journal of Soil Science, 67(4), pp. 504–513. Available at: https://doi.org/10.1111/ejss.12355.
  • Lv, L. et al. (2023) “Impact of conservation tillage on the distribution of soil nutrients with depth,” Soil & Tillage Research, 225, 105527. Available at: https://doi.org/10.1016/j.still.2022.105527.
  • Maetens, W., Poesen, J. and Vanmaercke, M. (2012) “How effective are soil conservation techniques in reducing plot runoff and soil loss in Europe and the Mediterranean?,” Earth-Science Reviews, 115(1–2), pp. 21–36. Available at: https://doi.org/10.1016/j.ear-scirev.2012.08.003.
  • Małecka, I. et al. (2015) “Winter wheat yield and soil properties response to long-term non-inversion tillage,” Journal of Agricultural Science and Technology, 17(6), pp. 1571–1584.
  • Malvezi, K.E.D. et al. (2019) “Soil chemical attributes variability under tillage and notillage in a long-term experiment in southern Brazil,” Bioscience Journal, 35(2), pp. 467–476.
  • Menšík, L. et al. (2020) “Water erosion reduction using different soil tillage approaches for maize (Zea mays L.) in the Czech Republic,” Land, 9(10), 358. Available at: https://doi.org/10.3390/land9100358.
  • Minasny, B. and McBratney, A.B. (2018) “Limited effect of organic matter on soil available water capacity,” European Journal of Soil Science, 69(1), pp. 39–47. Available at: https://doi.org/10.1111/ejss.12475.
  • Nandan, R. et al. (2019) “Impact of conservation tillage in rice–based cropping systems on soil aggregation, carbon pools and nutrients,” Geoderma, 340, pp. 104–114. Available at: https://doi.org/10.1016/j.geoderma.2019.01.001.
  • Ostrowska, A., Gawliński, S. and Szczubiałka, Z. (1991) Metody analizy i oceny właściwości gleb i roślin: Katalog [Methods of analysis and estimation of soil and plant properties: Catalog]. Warsaw: Dział Wydawnictw IOŚ.
  • Page A.L., Miller R.H., Keeney D.R. (1982) Methods of soil analysis. Part 2. Chemical and Microbiological Properties. 2 nd edn. Madison: American Society of Agronomy, Soil Science Society of America.
  • Panagos, P. et al. (2015) “Estimating the soil erosion cover-management factor at European scale,” Land Use Policy, 48C, pp. 38–50. Available at: https://doi.org/10.1016/j.landusepol.2015.05.021.
  • Pimentel, D. (2006) “Soil erosion: A food and environmental threat,” Environment, Development and Sustainability, 8(1), pp. 119–137. Available at: https://doi.org/10.1007/s10668-005-1262-8.
  • Podmanicky, L. et al. (2011) “Modelling soil quality changes in Europe. An impact assessment of land use change on soil quality in Europe,” Ecological Indicators, 11(1), pp. 4–15. Available at: https://doi.org/10.1016/j.ecolind.2009.08.002.
  • Polláková, N. et al. (2020) “Effects of conventional and reduced tillage technologies on basic soil chemical properties,” Journal of Elementology, 3/2020. Available at: https://doi.org/10.5601/je-lem.2020.25.2.1933.
  • Powlson, D.S. et al. (2011) “Soil management in relation to sustainable agriculture and ecosystem services,” Food Policy, 36, pp. S72–S87. Available at: https://doi.org/10.1016/j.foodpol.2010.11.025.
  • Qin, R., Stamp, P. and Richner, W. (2004) “Impact of tillage on root systems of winter wheat,” Agronomy Journal, 96(6), pp. 1523–1530. Available at: https://doi.org/10.2134/agronj2004.1523.
  • Raczkowski, C.W. et al. (2009) “Comparison of conventional and notillage corn and soybean production on runoff and erosion in the southeastern US Piedmont,” Journal of Soil and Water Conservation, 64(1), pp. 53–60. Available at: https://doi.org/10.2489/jswc.64.1.53.
  • Rawls, W.J. et al. (2003) “Effect of soil organic carbon on soil water retention,” Geoderma, 116(1–2), pp. 61–76. Available at: https://doi.org/10.1016/s0016-7061(03)00094-6.
  • Rosa de la, D. et al. (2004) “A land evaluation decision support system (MicroLEIS DSS) for agricultural soil protection,” Environmental Modelling & Software, 19(10), pp. 929–942. Available at: https://doi.org/10.1016/j.envsoft.2003.10.006.
  • Rosa de la, D. et al. (2005) “SIDASS project: Part 2. Soil erosion as a function of soil type and agricultural management in a Sevilla olive area, southern Spain,” Soil & Tillage Research, 82(1), pp. 19–28. Available at: https://doi.org/10.1016/j.still.2005.01.004.
  • Ruiz-Colmenero, M. et al. (2013) “Vegetation cover reduces erosion and enhances soil organic carbon in a vineyard in the central Spain,” Catena, 104, pp. 153–160. Available at: https://doi.org/10.1016/j.catena.2012.11.007.
  • Simota, C. et al. (2005) “SIDASS project: Part 1. A spatial distributed simulation model predicting the dynamics of agro-physical soil state for selection of management practices to prevent soil erosion,” Soil and Tillage Research, 82(1), pp. 15–18. Available at: https://doi.org/10.1016/j.still.2005.01.003.
  • Stanek-Tarkowska, J. et al. (2018) “Effects of reduced and traditional tillage on soil properties and diversity of diatoms under winter wheat,” International Agrophysics, 32(3), pp. 403–409. Available at: https://doi.org/10.1515/intag-2017-0016.
  • Xiong, M., Sun, R. and Chen, L. (2018) “Effects of soil conservation techniques on water erosion control: A global analysis,” Science of the Total Environment, 645, pp. 753–760. Available at: https://doi.org/10.1016/j.scitotenv.2018.07.124.
  • Yuan, M. et al. (2020) “Soil and crop response to phosphorus and potassium management under conservation tillage,” Agronomy Journal, 112(3), pp. 2302–2316. Available at: https://doi.org/10.1002/agj2.20114.
  • Zeng, C. et al. (2013) “Temporal changes in soil hydraulic conductivity with different soil types and irrigation methods,” Geoderma, 193–194, pp. 290–299. Available at: https://doi.org/10.1016/j.geoderma.2012.10.013.
  • Zhao, J., Yang, Z. and Govers, G. (2019) “Soil and water conservation measures reduce soil and water losses in China but not down to background levels: Evidence from erosion plot data,” Geoderma, 337, pp. 729–741. Available at: https://doi.org/10.1016/j.geoderma.2018.10.023.
  • Žížala, D., Zádorová, T. and Kapička, J. (2017) “Assessment of soil degradation by erosion based on analysis of soil properties using aerial hyperspectral images and ancillary data, Czech Republic,” Remote Sensing, 9(1), 28. Available at: https://doi.org/10.3390/rs9010028.
  • Zuazo, V.H.D. and Pleguezuelo, C.R.R. (2008) “Soil-erosion and runoff prevention by plant covers. A review,” Agronomy for Sustainable Development, 28(1), pp. 65–86. Available at: https://doi.org/10.1051/agro:2007062.
  • Zuber, S.M. et al. (2015) “Crop rotation and tillage effects on soil physical and chemical properties in Illinois,” Agronomy Journal, 107(3), pp. 971–978. Available at: https://doi.org/10.2134/agronj14.0465.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6f9ae1a-e2f7-4803-8c29-0cdb87df9c2d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.