Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The study of properties of switched and hybrid systems gives rise to a number of interesting and challenging mathematical problems. This paper aims to briefly survey recent results on stability and controllability of switched linear systems. First, the stability analysis for switched systems is reviewed. We focus on the stability analysis for switched linear systems under arbitrary switching, and we highlight necessary and sufficient conditions for asymptotic stability. After that, we review the controllability results.
Rocznik
Tom
Strony
547--555
Opis fizyczny
Bibliogr. 75 poz.
Twórcy
autor
- Silesian University of Technology, Institute of Automatic Control, 16 Akademicka St., 44-101 Gliwice, Poland
autor
- Silesian University of Technology, Institute of Automatic Control, 16 Akademicka St., 44-101 Gliwice, Poland
autor
- Silesian University of Technology, Institute of Automatic Control, 16 Akademicka St., 44-101 Gliwice, Poland
Bibliografia
- [1] P.J. Antsaklis, J.A. Stiver, and M.D. Lemmon, “Hybrid system modeling and autonomous control systems”, Hybrid Systems, eds. R. Grossman, A. Nerode, A. Ravn, and H. Rischel, pp. 366-392, Springer, New York, 1993.
- [2] D. Liberzon, Switching in Systems and Control. Systems &Control: Foundations and Applications series, Birkhauser, Boston, 2003.
- [3] Z. Sun and S.S. Ge, Stability Theory of Switched DynamicalSystems, Springer, London, 2011.
- [4] K.S. Narendra and J. Balakrishnan, “A common Lyapunov function for stable LTI systems with commuting A-matrices”, IEEE Trans. Automat. Control 39, 2469-2471 (1994).
- [5] J. Hespanha, S. Bohacek, K. Obrarzka, and J. Lee, “Hybrid model of TCP congestion control”, Hybrid Systems: Computationand Control 291-304 (2001).
- [6] A. Gollu and P.P. Varaiya, “Hybrid dynamical systems”, Proc.28th IEEE Conf. Decision and Control 1, 2708-2712 (1989).
- [7] R.W. Brockett, “Hybrid models for motion control systems”, Essays on Control Perspectives in the Theory and its Applications, eds. H.L. Trentelman and J.C. Willems, pp. 29-53, Birkhauser, Boston, 1993.
- [8] A. Back, J. Guckenheimer, and M. Myers, “A dynamical simulation facility for hybrid systems”, Hybrid Systems, eds. R. Grossman, A. Nerode, A. Ravn, and H. Rischel, pp. 255-267, Springer, New York, 1993.
- [9] P.P. Varaiya, “Smart cars on smart roads: problems of control”, IEEE Trans. Automat. Contr. 38, 195-207 (1993).
- [10] T. Hagiwara and M. Araki, “Design of a stable feedback controller based on the multirate sampling of the plant output”, IEEE Trans. Automat Contr. 33, 812-819 (1988).
- [11] K.M. Passino, A.N. Michel, and P.J. Antsaklis, “Lyapunov stability of a class of discrete event systems”, IEEE Trans. Automat. Contr. 39, 269-279 (1994).
- [12] M. Margaliot, “Stability analysis of switched systems using variational principles: an introduction”, Automatica 42, 2059-2077 (2006).
- [13] R. Shorten, F. Wirth, O. Mason, K. Wulff, and Ch. King, “Stability criteria for switched and hybrid systems”, SIAM Review 49 (4), 545-592 (2007).
- [14] J. Klamka, Controllability of Dynamical Systems, Kluwer, Dordrecht, 1991.
- [15] J. Klamka, “Controllability of dynamical systems”, AppliedMathematics 9, 57-75 (2008).
- [16] J. Klamka, “Controllability of dynamical systems-a survey”, Archives of Control Sciences 2 (XXXVIII), 281-307 (1993).
- [17] S.S. Ge, Z. Sun, and T.H. Lee, “Reachability and controllability of switched linear discrete-time system”, IEEE Trans. onAutomatic Control AC-46 (9), 1437-1441 (2001).
- [18] Z. Sun, S.S. Ge, and T.H. Lee, “Controllability and reachability criteria for switched linear system”, Automatica 38 (5), 775-786 (2002).
- [19] Z. Sun and S.S. Ge, Switched Linear Systems-Control andDesign, Springer, New York, 2004.
- [20] X. Liu, H. Lin, and B.M. Chen, “Structural controllability of switched linear systems”, ArXiv.1106.1703v2 [cs.SY] (2012).
- [21] J. Clotet, J. Ferrer, and M.D. Magret, “Distance from a controllable switched linear system to an uncontrollable one”, 2ndMeeting on Linear Algebra Matrix Analysis and Applications 1, CD-ROM (2010).
- [22] Y. Qiao and D. Cheng, “On partitioned controllability of switched linear systems”, Automatica 45 (1), 225-229 (2009).
- [23] T. Kaczorek, “Positive switched 2D linear systems described by the Roesser Models”, Eur. J. Control 18 (3), 239-246 (2012).
- [24] M.S. Branicky, “Multiple Lyapunov functions and other analysis tools for switched and hybrid systems”, IEEE Trans. Automat. Control 43, 475-482 (1998).
- [25] R.A. Decarlo, M.S. Branicky, S. Pettersson, B. Lennartson, and P.J. Antsaklis, “Perspectives and results on the stability and stabilizability of hybrid systems”, Proc. IEEE: Special IssueHybrid Systems 88, 1069-1082 (2000).
- [26] D. Liberzon and R. Tempo, “Common Lyapunov functions and gradient algorithms”, IEEE Trans. Automat. Control 49 (6), 990-994 (2004).
- [27] V.S. Kozyakin, “Algebraic unsolvability of problem of absolute stability of desynchronized systems”, Autom. Remote Control 51, 754-759 (1990).
- [28] R. Shorten and K. Narendra, “Necessary and sufficient conditions for the existence of a common quadratic Lyapunov function for two stable second order linear time-invariant systems”, Proc. Amer. Control Conf. 1, 1410-1414 (1999).
- [29] C. King and R. Shorten, “A singularity test for the existence of common quadratic Lyapunov functions for pairs of stable LTI systems”, Proc. Amer. Contol Conf. 1, 3881-3884 (2004).
- [30] R. Shorten, K. Narendra, and O. Mason, “A result on common quadratic Lyapunov functions”, IEEE Trans. Automat. Control 48 (1), 110-113, (2003).
- [31] M. Akar and K.S. Narendra, “On the existence of a common quadratic Lyapunov function for two stable second order LTI discrete-time systems”, Proc. American Control Conf. 25-27, 2572-2577 (2001).
- [32] L. Gurvits, R. Shorten, and O. Mason, “On the stability of switched positive linear systems”, IEEE Trans. Automat. Control 52 (6), 1099-1103 (2007).
- [33] R. Shorten and K. Narendra, “Necessary and sufficient conditions for the existence of a CQLF for a finite number of stable LTI systems”, Int. J. Adaptive Control Signal Processing 16 (10), 709-728 (2002).
- [34] Y. Mori, T. Mori, and Y. Kuroe, “A solution to the common Lyapunov function problem for continuous time systems”, Proc. 36th Conf. on Decision and Control 1, 3530-3531 (1997).
- [35] S. Bialas and M. Gora, On the Existence of a Common Solutionto the Lyapunov Equations, preprints, 2013.
- [36] L. Arnold, J-P. Eckmann, and H. Crauel, Lyapunov Exponents, Springer, Berlin, 1991.
- [37] A. Czornik, “On the generalized spectral subradius”, LinearAlgebra and its Applications 407, 242-248 (2005).
- [38] A. Czornik and P. Jurgaś, “Set of possible values of maximal Lyapunov exponents of discrete time-varying linear system”, Automatica 44 (2), 580-583 (2008).
- [39] A. Czornik and A. Nawrat, “On the regularity of discrete linear systems”, Linear Algebra and Its Applications 432 (11), 2745-2753 (2010).
- [40] A. Czornik and A. Nawrat, “On new estimates for Lyapunov exponents of discrete time-varying linear systems”, Automatica 46 (4), 775-778 (2010).
- [41] A. Czornik, “Bounds for characteristic exponents of discrete linear time varying systems”, J. Franklin Institute 347 (2), 502-507 (2010).
- [42] A. Czornik, “On the Perron exponents of discrete linear systems”, Linear Algebra and Its Applications 432 (1), 394-401 (2010).
- [43] A. Czornik, P. Mokry, and A. Nawrat, “On the exponential exponents of discrete linear systems”, Linear Algebra and ItsApplications 433 (4), 867-875 (2010).
- [44] A. Czornik, P. Mokry, and A. Nawrat, “On the sigma exponent of discrete linear systems”, IEEE Trans. on Automatic Control 55 (6), 1511-1515 (2010).
- [45] A. Czornik and A. Nawrat, “Stability by the linear approximation for discrete equations”, Linear Algebra and Its Applications 435 (4), 742-750 (2011).
- [46] A. Czornik and A. Nawrat, “On the perturbations preserving spectrum of discrete linear systems”, J. Difference Equationsand Applications 17 (1), 57-67 (2011).
- [47] A. Czornik, P. Mokry, and M. Niezabitowski, “On a continuity of characteristic exponents of linear discret time-varying systems”, Archives of Control Science 22, 17-27 (2012).
- [48] A. Czornik, A. Nawrat, and M. Niezabitowski, “Lyapunov exponents for discrete time-varying systems”, Advances for IntelligentSystems 1, 29-44 (2012).
- [49] N.E. Barabanov, “Lyapunov indicator of discrete inclusions, I”, Automation and Remote Control 49 (2), 152-157 (1988).
- [50] N.E. Barabanov, “Lyapunov indicator of discrete inclusions, II”, Automation and Remote Control 49 (3), 283-287 (1988).
- [51] N.E. Barabanov, “Lyapunov indicator of discrete inclusions, III”, Automation and Remote Control 49 (5), 558-565 (1988).
- [52] F. Wirth, “Dynamics of time-varying discrete-time linear systems: Spectral theory and the projected system”, SIAM J. Controland Optimization 36 (2), 447-487 (1998).
- [53] G.C. Rota and G. Strang, “A note on the joint spectral radius”, Inag. Math. 22, 379-381 (1960).
- [54] V.D. Blondel and J.N. Tsitsiklis, “Complexity of stability and controllability of elementary hybrid systems”, Automatica 35 (3), 479-489 (1999).
- [55] I. Daubechies and J.C. Lagarias, “Sets of matrices all infinite products of which converge”, Linear Algebra and Its Applications 161, 227-263 (1992).
- [56] L. Gurvits, “Stability of discrete linear inclusion”, Linear Algebraand Its Applications 231, 47-85 (1995).
- [57] M.A. Berger and Y. Wang, “Bounded semigroups of matrices”, Linear Algebra and Its Applications 166, 21-27 (1992).
- [58] A. Czornik, “On the generalized spectral subradius”, LinearAlgebra and Its Applications 407, 242-248 (2005).
- [59] R.M. Jungers, “The joint spectral radius: theory and applications”, in Lecture Notes in Control and Information Sciences, vol. 385 , Springer, Berlin, 2009.
- [60] I. Daubechies and J.C. Lagarias, “Corrigendum/addendum to: Sets of matrices all infinite products of which converge”, LinearAlgebra and Its Applications 327, 69-83 (2001).
- [61] L. Elsner, “The generalized spectral radius theorem: An analytic-Geometric proof”, Linear Algebra and Its Applications 220, 151-159 (1995).
- [62] V.D. Blondel and J.N. Tsitsiklis, “When is a pair of matrices mortal?”, Inform. Process. Lett. 63, 283-286 (1997).
- [63] A. Czornik and M. Niezabitowski, “On the Lyapunov exponents of a class of the second order discrete time linear systems with bounded perturbations”, Dynamical Systems: an InternationalJ., DOI:10.1080/14689367.2012.748718 (2012).
- [64] A. Czornik, A. Nawrat, and M. Niezabitowski, “On the spectrum of discrete time-varying linear systems”, NonlinearAnalysis: Hybrid Systems 9, 27-41 (2013).
- [65] A. Czornik and M. Niezabitowski, “Lyapunov exponents for systems with unbounded coefficients”, Dynamical Systems: Int.J. 28 (2), 140-153 (2013).
- [66] J.L. Daleckii and M.G. Krein, Stability of Solutions of DifferentialEquations in Banach Spaces, A.M.S. Providence, Rhode Island, 1974.
- [67] A. Czornik and P. Jurgaś, “Some properties of the spectral radius of a set of matrices”, Int. J. Applied Mathematics andComputer Science 16 (2), 183-188 (2006).
- [68] K.M. Przyłuski, “Remarks on the stability of linear infinitedimensional discrete-time systems”, J. Differ. Equations 72 (2), 189-200 (1988).
- [69] A. Czornik and A. Nawrat, “On rearrangements of exponentially stable discrete linear systems”, Proc. 18th IFAC WorldCongress 1, 13317-13319 (2011).
- [70] Z. Sun and D.Z. Zheng, “On reachability and stabilization of switched linear control systems”, IEEE Trans. on AutomaticControl AC-46 (2), 291-295 (2001).
- [71] J. Klamka, “Relative and absolute controllability of discrete systems with delays in control”, Int. J. Control 26 (1), 65-74 (1977).
- [72] J. Klamka, “Minimum energy control of discrete systems with delays in control”, Int. J. Control, 26(5), 737-744 (1977).
- [73] B. Sikora and J. Klamka, “On constrained stochastic controllability of dynamical systems with multiple delays in control”, Bull. Pol. Ac.: Tech. 60 (2), 301-305 (2012).
- [74] M. Busłowicz, “Stability analysis of continuous-time linear systems consisting of n subsystems with different fractional orders”, Bull. Pol. Ac.: Tech. 60 (2), 279-284 (2012).
- [75] T. Kaczorek, “Positive fractional continuous-time linear systems with singular pencils”, Bull. Pol. Ac.: Tech. 60 (1), 9-12 (2012).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6f82de7-3af0-4c7b-a6df-716d907b89e2