Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Let X, Y be real, infinite-dimensional Banach spaces. Let L(X, Y) be the space of bounded operators. An important aspect of understanding differentiability of the operator norm at A ∈ L(X, Y) is to estimate the limit (which always exists) limt→0+ ‖A + tB‖ − ‖A‖ / t for B ∈ L(X, Y), using the values of B on the state space SA = {τ ∈ L(X, Y)∗ : τ(A) = ‖A‖, ‖τ‖ = 1}. In this paper, we give several examples of Banach spaces, including the ℓp spaces (for 1 < p < ∞) where a more tangible estimate is possible, under additional hypotheses on A. We also use the notion of norm-weak upper-semi-continuity (usc, for short) of the preduality map to achieve this. Our results also show that the operator subdifferential limit is related to the corresponding subdifferential limit of the vectors in the range space, when A∗∗ attains its norm.
Wydawca
Czasopismo
Rocznik
Tom
Strony
297--302
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
- Department of Mathematics, Shiv Nadar University, Delhi (NCR), India
Bibliografia
- [1] M. D. Contreras, R. Payá and W. Werner, C∗-algebras that are I-rings, J. Math. Anal. Appl. 198 (1996), no. 1, 227-236.
- [2] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, American Mathematical Society, Providence, 1977.
- [3] C. M. Edwards and G. T. Rüttimann, Smoothness properties of the unit ball in a JB∗-triple, Bull. Lond. Math. Soc. 28 (1996), no. 2, 156-160.
- [4] C. Franchetti and R. Payá, Banach spaces with strongly subdifferentiable norm, Boll. Un. Mat. Ital. B (7) 7 (1993), no. 1, 45-70.
- [5] G. Godefroy and V. Indumathi, Norm-to-weak upper semi-continuity of the duality and pre-duality mappings, Set-Valued Anal. 10 (2002), no. 4, 317-330.
- [6] P. Harmand, D. Werner and W. Werner, M-Ideals in Banach Spaces and Banach Algebras, Lecture Notes in Math. 1547, Springer, Berlin, 1993.
- [7] R. R. Phelps, Convex Functions, Monotone Operators and Differentiability, Lecture Notes in Math. 1364, Springer, Berlin, 1989.
- [8] T. S. S. R. K. Rao, On the geometry of higher duals of a Banach space, Illinois J. Math. 45 (2001), no. 4, 1389-1392.
- [9] T. S. S. R. K. Rao, Smooth points in spaces of operators, Linear Algebra Appl. 517 (2017), 129-133.
- [10] T. S. S. R. K. Rao, Subdifferential set of an operator, Monatsh. Math. 199 (2022), no. 4, 891-898.
- [11] S. Singla, Gateaux derivative of C∗ norm, Linear Algebra Appl. 629 (2021), 208-218.
- [12] S. Singla, Birkhoff-James orthogonality and distance formulas in C∗-algebras and tuples of operators, PhD thesis, Shiv Nadar University, 2022.
- [13] F. Sullivan, Geometrical peoperties determined by the higher duals of a Banach space, Illinois J. Math. 21 (1977), no. 2, 315-331.
- [14] K. F. Taylor and W. Werner, Differentiability of the norm in C∗-algebras, in: Functional Analysis, Lecture Notes Pure Appl. Math. 150, Dekker, New York (1994), 329-344.
- [15] W. Werner, Subdifferentiability and the noncommutative Banach-Stone theorem, in: Function Spaces, Lecture Notes Pure Appl. Math. 172, Dekker, New York (1995), 377-386.
- [16] V. Zizler, On some extremal problems in Banach spaces, Math. Scand. 32 (1973), 214-224.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6f6568e-1aa1-453b-bc17-55f7f6c9229a