PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tissue engineering of bone: the role of osteoblasts in osteogenesis and peri-implant bone healing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Osteoblasts are cells of mesenchymal origin, which rebuild resorbed bone by synthesizing bone matrix proteins and by inducing bone matrix mineralization. Osteoblasts play a crucial role in creating and maintenance of healthy bone architecture, bone repair, and peri-implant bone healing (osseointegration). These bone-forming cells are also involved in regulation of osteoclasts function, and hence bone resorption in osteoclastogenesis process. We have presented our own studies on the subsequent stages of differentiation of Human Bone-Derived Cells (HBDCs) that could be a good candidate as an autogenous source for reconstruction and rebuilding of own patient's bone using tissue engineering methods. In this review we discussed the biology of osteoblasts, compared with the HBDCs cultures, under the influence of growth factors (FGF-2, TGF-ß, IGF, PDGF) and hormones (PTH, 1,25-dihydroxyvitamin D3, leptin). Our review is also focused on the participation of intercellular adhesion proteins (cadherins, claudins, connexin, 'OsteoMacs'), transcription factors (Cbfal, Msx-2, Osx, ATF4), and others molecules (RANKL, OPG, BMP2, lactofferin, PPARY) in modulating osteoblasts functions on the basis of current reports, throwing new light on the involvement of osteoblasts during osteogenesis and peri-implant bone healing.
Rocznik
Strony
2--7
Opis fizyczny
Bibliogr. 40 poz., rys.
Twórcy
autor
  • Medical University of Warsaw, Department of Biophysics and Human Physiology, Chałubińskiego 5, 02-004 Warsaw, Poland
  • Medical University of Warsaw, Department of Biophysics and Human Physiology, Chałubińskiego 5, 02-004 Warsaw, Poland
Bibliografia
  • [1] Kassem M., Abdallah B.M., Saeed H.: Osteoblastic cells: differentiation and trans-differentiation. Arch Biochem Biophys 473 (2008) 183-187.
  • [2] Raggatt L.J., Partridge N.C.: Cellular and molecular mechanisms of bone remodeling. J Biol Chem 285 (2010) 25103-25108.
  • [3] Miron R.J., Hedbom E., Ruggiero S., Bosshardt D.D., Zhang Y., Mauth C., Gemperli A.C., Iizuka T., Buser D., Sculean A.: Premature osteoblast clustering by enamel matrix proteins induces osteoblast differentiation through up-regulation of connexin 43 and N-cadherin. PLoS One 6 (2011) e23375.
  • [4] Jayakumar P., Di Silvio L.: Osteoblasts in bone tissue engineering. Proc Inst Mech Eng H 224 (2010) 1415-1440.
  • [5] Singhatanadgit W., Olsen I.: Endogenous BMPR-IB signaling is required for early osteoblast differentiation of human bone cells. In Vitro Cell Dev Biol Anim 47 (2011) 251-259.
  • [6] Wozniak P., Bil M., Ryszkowska J., Wychowanski P., Wrobel E., Ratajska A., Hoser G., Przybylski J., Kurzydlowski K.J., Lewandowska-Szumiel M.: Candidate bone-tissue-engineered product based on human-bone-derived cells and polyurethane scaffold. Acta Biomater 6 (2010) 2484-2493.
  • [7] Albrektsson T., Johansson C.: Osteoinduction, osteoconduction and osseointegration. Eur Spine J 10 Suppl 2 (2001) S96-101.
  • [8] Caetano-Lopes J., Canhao H., Fonseca J.E.: Osteoblasts and bone formation. Acta Reumatol Port 32 (2007) 103-110.
  • [9] Baek W.Y., Lee M.A., Jung J.W., Kim S.Y., Akiyama H., De Crombrugghe B., Kim J.E.: Positive regulation of adult bone formation by osteoblast-specific transcription factor osterix. J Bone Miner Res 24 (2009) 1055-1065.
  • [10] Witkowska-Zimny M., Wróbel E., Przybylski J. The most important transcriptional factors of osteoblastogenesis. Advances in Cell Biology 2 (2010) 17-28.
  • [11] Krane S.M.: Identifying genes that regulate bone remodeling as potential therapeutic targets. J Exp Med 201 (2005) 841-843.
  • [12] Fu J, Zhang J, Zhang X, Sun Y. Upregulated expression of RANKL on bone marrow stromal cells can stimulate osteoclast precursors to mature into functional osteoclasts and promote survival of myeloma cells. Arch Med Sci 4 (2008) 233-241.
  • [13] Lombardi G., Di Somma C., Vuolo L., Guerra E., Scarano E., Colao A.: Role of IGF-I on PTH effects on bone. J Endocrinol Invest 33 (2010) 22-26.
  • [14] Nakahama K.: Cellular communications in bone homeostasis and repair. Cell Mol Life Sci 67 (2010) 4001-4009.
  • [15] Hay E., Laplantine E., Geoffroy V., Frain M., Kohler T., Muller R., Marie P.J.: N-cadherin interacts with axin and LRP5 to negatively regulate Wnt/beta-catenin signaling, osteoblast function, and bone formation. Mol Cell Biol 29 (2009) 953-964.
  • [16] Kii I., Amizuka N., Shimomura J., Saga Y., Kudo A.: Cell-cell interaction mediated by cadherin-11 directly regulates the differentiation of mesenchymal cells into the cells of the osteo-lineage and the chondro-lineage. J Bone Miner Res 19 (2004) 1840-1849.
  • [17] Wongdee K., Pandaranandaka J., Teerapornpuntakit J., Tudpor K., Thongbunchoo J., Thongon N., Jantarajit W., Krishnamra N., Charoenphandhu N.: Osteoblasts express claudins and tight junction-associated proteins. Histochem Cell Biol 130 (2008) 79-90.
  • [18] Civitelli R., Beyer E.C., Warlow P.M., Robertson A.J., Geist S.T., Steinberg T.H.: Connexin43 mediates direct intercellular communication in human osteoblastic cell networks. J Clin Invest 91 (1993) 1888-1896.
  • [19] Prele C.M., Horton M.A., Caterina P., Stenbeck G.: Identification of the molecular mechanisms contributing to polarized trafficking in osteoblasts. Exp Cell Res 282 (2003) 24-34.
  • [20] Chang M.K., Raggatt L.J., Alexander K.A., Kuliwaba J.S., Fazzalari N.L., Schroder K., Maylin E.R., Ripoll V.M., Hume D.A., Pettit A.R.: Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol 181 (2008) 1232-1244.
  • [21] Włodarski K.: Histogeneza tkanki kostnej. Czas. Stomatol 62 (2008) 282-292.
  • [22] Kuzyk P.R., Saccone M., Sprague S., Simunovic N., Bhandari M., Schemitsch E.H.: Cross-linked versus conventional polyethylene for total hip replacement: a meta-analysis of randomised controlled trials. J Bone Joint Surg Br 93 (2011) 593-600.
  • [23] Branemark R., Branemark P.I., Rydevik B., Myers R.R.: Osseointegration in skeletal reconstruction and rehabilitation: a review. J Rehabil Res Dev 38 (2001) 175-181.
  • [24] Wrobel E., Witkowska-Zimny M., Przybylski J.: Biological mechanisms of implant osseointegration. Ortop Traumatol Rehabil 12 (2010) 401-409.
  • [25] Maciejewska I., Nowakowska J., Bereznowski Z.: Osteointegration of titanium dental implants: phases of bone healing. A review article. Protet. Stomatol 3 (2006) 214-219.
  • [26] Boyan B.D., Sylvia V.L., Liu Y., Sagun R., Cochran D.L., Lohmann C.H., Dean D.D., Schwartz Z.: Surface roughness mediates its effects on osteoblasts via protein kinase A and phospholipase A2. Biomaterials 20 (1999) 2305-2310.
  • [27] Kos M, Łuczak K, Klempous R. Contemporary views on the mechanisms of bone tissue healing. Adv Clin Exp Med 11 (2002).
  • [28] De Villiers Tj. Bone health and osteoporosis in postmenopausal women. Best Pract Res Clin Obstet Gynaecol. 23 (2009) 73-85.
  • [29] Mysliwiec J., Zbucki R., Nikolajuk A., Mysliwiec P., Taranta A., Kaminski K., Bondyra Z., Dadan J., Gorska M., Winnicka M.M.: Role of interleukin-6 on RANKL-RANK/osteoprotegerin system in hypothyroid ovariectomized mice. Folia Histochem Cytobiol 48 (2010) 549-554.
  • [30] Kousteni S., Bilezikian J.P.: The cell biology of parathyroid hormone in osteoblasts. Curr Osteoporos Rep 6 (2008) 72-76.
  • [31] Maruotti N., Corrado A., Grano M., Colucci S., Cantatore F.P.: Normal and osteoporotic human osteoblast behaviour after 1,25- dihydroxy-vitamin D(3) stimulation. Rheumatol Int 29 (2009) 667-672.
  • [32] Lamghari M., Tavares L., Camboa N., Barbosa M.A.: Leptin effect on RANKL and OPG expression in MC3T3-E1 osteoblasts. J Cell Biochem 98 (2006) 1123-1129.
  • [33] Wang L., Huang Y., Pan K., Jiang X., Liu C.: Osteogenic responses to different concentrations/ratios of BMP-2 and bFGF in bone formation. Ann Biomed Eng 38 (2010) 77-87.
  • [34] Bosetti M., Boccafoschi F., Leigheb M., Cannas M.F.: Effect of different growth factors on human osteoblasts activities: a possible application in bone regeneration for tissue engineering. Biomol Eng 24 (2007) 613-618.
  • [35] Kaewsrichan J., Wongwitwichot P., Chandarajoti K., Chua K.H., Ruszymah B.H.: Sequential induction of marrow stromal cells by FGF2 and BMP2 improves their growth and differentiation potential in vivo. Arch Oral Biol 56 (2010) 90-101.
  • [36] Maegawa N., Kawamura K., Hirose M., Yajima H., Takakura Y., Ohgushi H.: Enhancement of osteoblastic differentiation of mesenchymal stromal cells cultured by selective combination of bone morphogenetic protein-2 (BMP-2) and fibroblast growth factor-2 (FGF-2). J Tissue Eng Regen Med 1 (2007) 306-313.
  • [37] Marie P.J., Debiais F., Hay E.: Regulation of human cranial osteoblast phenotype by FGF-2, FGFR-2 and BMP-2 signaling. Histol Histopathol 17 (2002) 877-885.
  • [38] Spector J.A., Mathy J.A., Warren S.M., Nacamuli R.P., Song H.M., Lenton K., Fong K.D., Fang D.T., Longaker M.T.: FGF-2 acts through an ERK1/2 intracellular pathway to affect osteoblast differentiation. Plast Reconstr Surg 115 (2005) 838-852.
  • [39] Ng F., Boucher S., Koh S., Sastry K.S., Chase L., Lakshmipathy U., Choong C., Yang Z., Vemuri M.C., Rao M.S., Tanavde V.: PDGF, TGF-beta, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages. Blood 112 (2008) 295-307.
  • [40] Naot D., Chhana A., Matthews B.G., Callon K.E., Tong P.C., Lin J.M., Costa J.L., Watson M., Grey A.B., Cornish J.: Molecular mechanisms involved in the mitogenic effect of lactoferrin in osteo- blasts. Bone 49 (2011) 217-224.
Uwagi
EN
This work was supported ion part by research grants: No. N N302157037 from the Polish funds for scientific research in 2009-2012 (for Małgorzata Witkowska-Zimny), and grant No. 3 T08A 001 30 from Polish Ministry of Science and Higher Education (for Edyta Wróbel).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6f21351-f9d9-4d82-b30e-8bfb83cec08a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.