PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improving security performance of healthcare data in the Internet of medical things using a hybrid metaheuristic model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Internet of medical things (IoMT) network design integrates multiple healthcare devices to improve patient monitoring and real-time care operations. These networks use a wide range of devices to make critical patient care decisions. Thus, researchers have deployed multiple high-security frameworks with encryption, hashing, privacy preservation, attribute based access control, and more to secure these devices and networks. However, real-time monitoring security models are either complex or unreconfigurable. The existing models’ security depends on their internal configuration, which is rarely extensible for new attacks. This paper introduces a hybrid metaheuristic model to improve healthcare IoT security performance. The blockchain based model can be dynamically reconfigured by changing its encryption and hashing standards. The proposed model then continuously optimizes blockchain based IoMT deployment security and QoS performance using elephant herding optimization (EHO) and grey wolf optimization (GWO). Dual fitness functions improve security and QoS for multiple attack types in the proposed model. These fitness functions help reconfigure encryption and hashing parameters to improve performance under different attack configurations. The hybrid integration of EH and GW optimization models can tune blockchain based deployment for dynamic attack scenarios, making it scalable and useful for real-time scenarios. The model is tested under masquerading, Sybil, man-in-the-middle, and DDoS attacks and is compared with state-of-the-art models. The proposed model has 8.3% faster attack detection and mitigation, 5.9% better throughput, a 6.5% higher packet delivery ratio, and 10.3% better network consistency under attack scenarios. This performance enables real-time healthcare use cases for the proposed model.
Rocznik
Strony
623--636
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
  • School of Computer Science and Engineering, VIT-AP University, Amaravati, 522237, Andhra Pradesh, India
  • School of Computer Science and Engineering, VIT-AP University, Amaravati, 522237, Andhra Pradesh, India
Bibliografia
  • [1] Ahmad, M., Jabbar, S., Ahmad, A., Piccialli, F. and Jeon, G. (2018). A sustainable solution to support data security in high bandwidth healthcare remote locations by using TCP cubic mechanism, IEEE Transactions on Sustainable Computing 5(2): 249-259.
  • [2] Alladi, T. and Chamola, V. (2020). HARCI: A two-way authentication protocol for three entity healthcare IoT networks, IEEE Journal on Selected Areas in Communications 39(2): 361-369.
  • [3] Amato, F., Casola, V., Cozzolino, G., De Benedictis, A. and Moscato, F. (2019). Exploiting workflow languages and semantics for validation of security policies in IoT composite services, IEEE Internet of Things Journal 7(5): 4655-4665.
  • [4] Aujla, G.S. and Jindal, A. (2020). A decoupled blockchain approach for edge-envisioned IoT-based healthcare monitoring, IEEE Journal on Selected Areas in Communications 39(2): 491-499.
  • [5] Azeem, M., Ullah, A., Ashraf, H., Jhanjhi, N., Humayun, M., Aljahdali, S. and Tabbakh, T.A. (2021). Fog-oriented secure and lightweight data aggregation in IoMT, IEEE Access 9(1): 111072-111082.
  • [6] Bao, Y., Qiu, W. and Cheng, X. (2021). Secure and lightweight fine-grained searchable data sharing for IoT-oriented and cloud-assisted smart healthcare system, IEEE Internet of Things Journal 9(4): 2513-2526.
  • [7] Besher, K.M., Subah, Z. and Ali, M.Z. (2020). IoT sensor initiated healthcare data security, IEEE Sensors Journal 21(10): 11977-11982.
  • [8] Bi, H., Liu, J. and Kato, N. (2021). Deep learning-based privacy preservation and data analytics for IoT enabled healthcare, IEEE Transactions on Industrial Informatics 18(7): 4798-4807.
  • [9] Chinaei, M.H., Gharakheili, H.H. and Sivaraman, V. (2021). Optimal witnessing of healthcare IoT data using blockchain logging contract, IEEE Internet of Things Journal 8(12): 10117-10130.
  • [10] Egala, B.S., Pradhan, A.K., Badarla, V. and Mohanty, S.P. (2021). Fortified-chain: A blockchain-based framework for security and privacy-assured internet of medical things with effective access control, IEEE Internet of Things Journal 8(14): 11717-11731.
  • [11] Elayan, H., Aloqaily, M. and Guizani, M. (2021). Sustainability of healthcare data analysis IoT-based systems using deep federated learning, IEEE Internet of Things Journal 9(10): 7338-7346.
  • [12] Gao, Y., Lin, H., Chen, Y. and Liu, Y. (2021). Blockchain and SGX-enabled EDGE-computing-empowered secure IoMT data analysis, IEEE Internet of Things Journal 8(21): 15785-15795.
  • [13] Garg, N., Wazid, M., Das, A.K., Singh, D.P., Rodrigues, J.J. and Park, Y. (2020). BAKMP-IoMT: Design of blockchain enabled authenticated key management protocol for internet of medical things deployment, IEEE Access 8(1): 95956-95977.
  • [14] Gope, P., Gheraibia, Y., Kabir, S. and Sikdar, B. (2020). A secure IoT-based modern healthcare system with fault-tolerant decision making process, IEEE Journal of Biomedical and Health Informatics 25(3): 862-873.
  • [15] Khan, A.Y., Latif, R., Latif, S., Tahir, S., Batool, G. and Saba, T. (2019). Malicious insider attack detection in IoTs using data analytics, IEEE Access 8(1): 11743-11753.
  • [16] Li, J., Cai, J., Khan, F., Rehman, A.U., Balasubramaniam, V., Sun, J. and Venu, P. (2020). A secured framework for SDN-based EDGE computing in IoT-enabled healthcare system, IEEE Access 8(1): 135479-135490.
  • [17] Liu, L. and Li, Z. (2022). Permissioned blockchain and DEEP reinforcement learning enabled security and energy efficient healthcare internet of things, IEEE Access 10(1): 53640-53651.
  • [18] Liu, Y., Shan, G., Liu, Y., Alghamdi, A., Alam, I. and Biswas, S. (2022). Blockchain bridges critical national infrastructures: E-healthcare data migration perspective, IEEE Access 10(1): 28509-28519.
  • [19] Liu, Y., Yu, J., Fan, J., Vijayakumar, P. and Chang, V. (2021). Achieving privacy-preserving DSSE for intelligent IoT healthcare system, IEEE Transactions on Industrial Informatics 18(3): 2010-2020.
  • [20] Masud, M., Gaba, G.S., Choudhary, K., Hossain, M.S., Alhamid, M.F. and Muhammad, G. (2021). Lightweight and anonymity-preserving user authentication scheme for IoT-based healthcare, IEEE Internet of Things Journal 9(4): 2649-2656.
  • [21] Meng, Y., Huang, Z., Shen, G. and Ke, C. (2019). SDN-based security enforcement framework for data sharing systems of smart healthcare, IEEE Transactions on Network and Service Management 17(1): 308-318.
  • [22] More, S., Singla, J., Verma, S., Ghosh, U., Rodrigues, J.J., Hosen, A.S. and Ra, I.-H. (2020). Security assured CNN-based model for reconstruction of medical images on the internet of healthcare things, IEEE Access 8(1): 126333-126346.
  • [23] Nguyen, D.C., Pathirana, P.N., Ding, M. and Seneviratne, A. (2021). BEdgeHealth: A decentralized architecture for EDGE-based IoMT networks using blockchain, IEEE Internet of Things Journal 8(14): 11743-11757.
  • [24] Rachakonda, L., Bapatla, A.K., Mohanty, S.P. and Kougianos, E. (2020). SaYoPillow: Blockchain-integrated privacy-assured IoMT framework for stress management considering sleeping habits, IEEE Transactions on Consumer Electronics 67(1): 20-29.
  • [25] Rathore, S., Park, J.H. and Chang, H. (2021). Deep learning and blockchain-empowered security framework for intelligent 5G-enabled IoT, IEEE Access 9(1): 90075-90083.
  • [26] Ray, P.P., Chowhan, B., Kumar, N. and Almogren, A. (2021). BIoTHR: Electronic health record servicing scheme in IoT-blockchain ecosystem, IEEE Internet of Things Journal 8(13): 10857-10872.
  • [27] Ren, J., Li, J., Liu, H. and Qin, T. (2021). Task offloading strategy with emergency handling and blockchain security in SDN-empowered and FOG-assisted healthcare IoT, Tsinghua Science and Technology 27(4): 760-776.
  • [28] Rezaeibagha, F., Mu, Y., Huang, K. and Chen, L. (2020). Secure and efficient data aggregation for IoT monitoring systems, IEEE Internet of Things Journal 8(10): 8056-8063.
  • [29] Wang, K., Chen, C.-M., Tie, Z., Shojafar, M., Kumar, S. and Kumari, S. (2021). Forward privacy preservation in IoT-enabled healthcare systems, IEEE Transactions on Industrial Informatics 18(3): 1991-1999.
  • [30] Wu, G., Wang, S. and Ning, Z. (2021). Blockchain-enabled privacy-preserving access control for data publishing and sharing in the internet of medical things, IEEE Internet of Things Journal 9(11): 8091-8104.
  • [31] Xiong, H., Jin, C., Alazab, M., Yeh, K.-H., Wang, H., Gadekallu, T.R., Wang, W. and Su, C. (2021). On the design of blockchain-based ECDSA with fault-tolerant batch verification protocol for blockchain-enabled IoMT, IEEE Journal of Biomedical and Health Informatics 26(5): 1977-1986.
  • [32] Xu, L., Zhou, X., Tao, Y., Liu, L., Yu, X. and Kumar, N. (2021). Intelligent security performance prediction for IoT-enabled healthcare networks using an improved CNN, IEEE Transactions on Industrial Informatics 18(3): 2063-2074.
  • [33] Yang, X., Yang, X., Yi, X., Khalil, I., Zhou, X., He, D., Huang, X. and Nepal, S. (2021). Blockchain-based secure and lightweight authentication for Internet of things, IEEE Internet of Things Journal 9(5): 3321-3332.
  • [34] Zaman, S., Khandaker, M.R., Khan, R.T., Tariq, F. and Wong, K.-K. (2022). Thinking out of the blocks: Holochain for distributed security in IoT healthcare, IEEE Access 10(1): 37064-37081.
  • [35] Zhang, Y., Sun, Y., Jin, R., Lin, K. and Liu, W. (2021). High-performance isolation computing technology for smart IoT healthcare in cloud environments, IEEE Internet of Things Journal 8(23): 16872-16879.
  • [36] Zhu, F., Yi, X., Abuadbba, A., Khalil, I., Nepal, S. and Huang, X. (2021). Cost-effective authenticated data redaction with privacy protection in IoT, IEEE Internet of Things Journal 8(14): 11678-11689.
  • [37] Zulkifl, Z., Khan, F., Tahir, S., Afzal, M., Iqbal,W., Rehman,A., Saeed, S. and Almuhaideb, A.M. (2022). FBASHI: Fuzzy and blockchain-based adaptive security for healthcare IoTs, IEEE Access 10: 15644-15656.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6f18f78-a838-4e77-a687-57595b4fe6dc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.