Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The purpose of this research is to assess the efficacy of five distinct artificial intelligence model techniques: AdaBoost, Gradient Boosting, Tree, Random Forest, and KNN, to estimate the water quality parameters of dissolved oxygen (DO) and biochemical oxygen demand (BOD). The performance of each model was assessed using two datasets: AlMuthanna Bridge and Al-Aammah Bridge on the Tigris River in Baghdad City. The data was randomly divided into two categories: 70% for training and 30% for testing. Principal component analysis (PCA) was used to identify the most effective input parameters for modeling DO and BOD. The four performance criteria – coefficient of determination (R2 ), root mean square error (RMSE), mean absolute error (MAE), and mean square error (MSE) – were applied in order to evaluate the models’ effectiveness. It was demonstrated that the AdaBoost and Gradient Boosting models were superior for predicting DO and BOD. For DO prediction, the coefficient of determination R2 of Gradient Boosting (AdaBoost) at Al-Muthanna Bridge and Al-Aammah Bridge were 0.994 (0.992) and 0.994 (0.991), respectively. For BOD prediction, the correlation coefficients R2 of Gradient Boosting (AdaBoost) were 0.992 (0.982) and 0.989 (0.990), respectively. This study has shown that sophisticated machine learning techniques, such as gradient boosting and AdaBoost, are suitable for predicting water quality indices. They could also be helpful for predicting and managing the water quality parameters of different water supply systems in the future in water-related communities where artificial intelligence technology is still being thoroughly investigated.
Wydawca
Rocznik
Tom
Strony
13--25
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
autor
- Civil Engineering Department. University of Technology, Baghdad, Iraq
autor
- Civil Engineering Department. University of Technology, Baghdad, Iraq
Bibliografia
- 1. Qiu, D., Zhu, G., Lin, X., Jiao, Y., Lu, S., Liu, J., Zhang, W., Ye, L., Li, R., Wang, Q., Chen, L. 2023. Dissipation and movement of soil water in artificial forest in arid oasis areas: Cognition based on stable isotopes. CATENA, 228, 107178.
- 2. Zhou, G., Yang, Z. 2023. Analysis for 3-D morphology structural changes for underwater topographical in Culebrita Island. International Journal of Remote Sensing, 44(7), 2458-2479.
- 3. Biesbroek, R., Wright, S.J., Eguren, S.K., Bonotto, A., Athanasiadis, I.N. 2022. Policy attention to climate change impacts, adaptation and vulnerability: a global assessment of National Communications (1994–2019). Climate Policy, 22(1), 97–111.
- 4. Fuller, R., Landrigan, P.J., Balakrishnan, K., Bathan, G., Bose-O’Reilly, S., Brauer, M., et al. 2022. Pollution and health: a progress update. The Lancet Planetary Health, 6(6), e535–e547.
- 5. Wang, P., Yao, J., Wang, G., Hao, F., Shrestha, S., Xue, B., Xie, G., Peng, Y. 2019. Exploring the application of artificial intelligence technology for identification of water pollution characteristics and tracing the source of water quality pollutants. Science of the Total Environment, 693, 133440.
- 6. Al-Janabi, Z.Z., Al-Kubaisi, A.R., Al-Obaidy, A.H.M.J. 2012. Assessment of water quality of Tigris River by using water quality index (CCME WQI). Al-Nahrain Journal of Science, 15(1), 119–126.
- 7. Asadollah, S.B.H.S., Sharafati, A., Motta, D., Yaseen, Z.M. 2021. River water quality index prediction and uncertainty analysis: A comparative study of machine learning models. Journal of environmental chemical engineering, 9(1), 104599.
- 8. Elbeltagi, A., Al-Mukhtar, M., Kushwaha, N.L., Al-Ansari, N., Vishwakarma, D.K. 2023. Forecasting monthly pan evaporation using hybrid additive regression and data-driven models in a semi-arid environment. Applied Water Science, 13(2), 42.
- 9. Tung, T.M., Yaseen, Z.M. 2020. A survey on river water quality modelling using artificial intelligence models: 2000–2020. Journal of Hydrology, 585, 124670.
- 10. Ding, Y.R., Cai, Y.J., Sun, P.D., Chen, B. 2014. The use of combined neural networks and genetic algorithms for prediction of river water quality. Journal of applied research and technology, 12(3), 493–499.
- 11. Wang, J., Shi, Y., Zhang, R., Wu, Z., Ye, H., Li, S. 2023. CVT on-line error measurement hybriddriven by domain knowledge and Stacking Model. Engineering Applications of Artificial Intelligence, 125, 106710.
- 12. Kılıç, H., Çetin, A. 2023. A novel graph-based ensemble token classification model for keyword extraction. Arabian Journal for Science and Engineering, 48(8), 10673–10680.
- 13. Montazeri, A.H., Emami, S.K., Zaghiyan, M.R., Eslamian, S. 2023. Stochastic learning algorithms. In Handbook of Hydroinformatics. Elsevier, 385–410.
- 14. Geshnigani, F.S., Golabi, M.R., Mirabbasi, R., Tahroudi, M.N. 2023. Daily solar radiation estimation in Belleville station, Illinois, using ensemble artificial intelligence approaches. Engineering Applications of Artificial Intelligence, 120, 105839.
- 15. Kang, Y., Song, J., Li, K., Zhai, X.A., Li, Y. 2022. Research on water quality prediction model based on echo state network. Journal of Computational Methods in Sciences and Engineering, 22(3), 901–910.
- 16. Liu, C., Xu, M., Liu, Y., Li, X., Pang, Z., Miao, S. 2022. Predicting groundwater indicator concentration based on long short-term memory neural network: A case study. International Journal of Environmental Research and Public Health, 19(23), 15612.
- 17. Khosravi, K., Miraki, S., Saco, P.M., Farmani, R. 2021. Short-term River streamflow modeling using Ensemble-based additive learner approach. Journal of Hydro-environment Research, 39, 81–91.
- 18. Shahdad, M., Saber, B. 2022. Drought forecasting using new advanced ensemble-based models of reduced error pruning tree. Acta Geophysica, 70(2), 697–712.
- 19. Saha, T.K., Pal, S., Sarda, R. 2022. Impact of river flow modification on wetland hydrological and morphological characters. Environmental Science and Pollution Research, 29(50), 75769–75789.
- 20. Khosravi, K., Mao, L., Kisi, O., Yaseen, Z.M., Shahid, S. 2018. Quantifying hourly suspended sediment load using data mining models: case study of a glacierized Andean catchment in Chile. Journal of Hydrology, 567, 165-179.
- 21. Chen, K., Chen, H., Zhou, C., Huang, Y., Qi, X., Shen, R., Liu, F., Zuo, M., Zou, X., Wang, J., Zhang, Y., Chen, D., Chen, X., Yong feng, D., Ren, H., Ren, H. 2020. Comparative analysis of surface water quality prediction performance and identification of key water parameters using different machine learning models based on big data. Water research, 171, 115454.
- 22. Asadollahfardi, G., Taklify, A., Ghanbari, A. 2012. Application of artificial neural network to predict TDS in Talkheh Rud River. Journal of Irrigation and Drainage Engineering, 138(4), 363–370.
- 23. Mahdavi-Meymand, A., Sulisz, W., Zounemat-Kermani, M. 2024. Hybrid and integrative evolutionary machine learning in hydrology: A systematic review and meta-analysis. Archives of Computational Methods in Engineering, 31(3), 1297–1340.
- 24. Jamei, M., Karbasi, M., Alawi, O.A., Kamar, H.M., Khedher, K.M., Abba, S.I., Yaseen, Z.M. 2022. Earth skin temperature long-term prediction using novel extended Kalman filter integrated with Artificial Intelligence models and information gain feature selection. Sustainable Computing: Informatics and Systems, 35, 100721.
- 25. Alavi, J., Ewees, A.A., Ansari, S., Shahid, S., Yaseen, Z.M. 2022. A new insight for real-time wastewater quality prediction using hybridized kernelbased extreme learning machines with advanced optimization algorithms. Environmental Science and Pollution Research, 29(14), 20496–20516.
- 26. Manzar, M.S., Benaafi, M., Costache, R., Alagha, O., Mu’azu, N.D., Zubair, M., Abdullahi J., Abba, S.I. 2022. New generation neurocomputing learning coupled with a hybrid neuro-fuzzy model for quantifying water quality index variable: A case study from Saudi Arabia. Ecological Informatics, 101696. 70.
- 27. Boano, F., Revelli, R., Ridolfi, L. 2006. Stochastic modelling of DO and BOD components in a stream with random inputs. Advances in Water Resources, 29(9), 1341-1350.
- 28. Benaafi, M., Yassin, M.A., Usman, A.G., Abba, S.I. 2022. Neurocomputing Modelling of Hydrochemical and Physical Properties of Groundwater Coupled with Spatial Clustering, GIS, and Statistical Techniques. Sustainability, 14(4), 2250.
- 29. Ramal, M.M., Jalal, A.D., Sahab, M.F., Yaseen, Z.M. 2022. River water turbidity removal using new natural coagulant aids: case study of Euphrates River, Iraq. Water Supply, 22(3), 2721–2737.
- 30. Adedeji, I.C., Ahmadisharaf, E., Sun, Y. 2022. Predicting in-stream water quality constituents at the watershed scale using machine learning. Journal of Contaminant Hydrology, 251, 104078.
- 31. Adnan, T.A., Mohammed, E.A., Al-Madhhachi, A.S.T. 2021. Water quality index of tigris river within baghdad city: a review. Journal of Engineering and Sustainable Development, 25(3), 34–43.
- 32. Al Obaidy, H.M., S Awad, E., Zahraw, Z. 2016. Impact of Medical City and Al-Rasheed power plant effluents on the water quality index value of Tigris River at Baghdad city. Engineering and Technology Journal, 34(4A), 715–724.
- 33. Oleiwi, A.S., Al-Dabbas, M. 2022. Assessment of contamination along the Tigris River from Tharthar-Tigris canal to Azizziyah, middle of Iraq. Water, 14(8), 1194.
- 34. Breiman, L. 2001. Random forests. Machine Learning, 45(1), 5–32.
- 35. Chen, W., Li, Y., Xue, W., Shahabi, H., Li, S., Hong, H., Wang, X., Bian, H., Zhang, S., Pradhan, B., Ahmad, B.B. 2020. Modeling flood susceptibility using data-driven approaches of naïve bayes tree, alternating decision tree, and random forest methods. Science of The Total Environment, 701, 134979.
- 36. Cutler, D.R., Edwards Jr, T.C., Beard, K.H., Cutler, A., Hess, K.T., Gibson, J., Lawler, J.J. 2007. Random forests for classification in ecology. Ecology, 88(11), 2783–2792.
- 37. Abbas, J. 2013. Assessment of water quality in Tigris River-Iraq by using GIS mapping. Natural Resources, 2013.
- 38. Belgiu, M., Drăguţ, L. 2016. Random forest in remote sensing: A review of applications and future directions. ISPRS journal of photogrammetry and remote sensing, 114, 24-31.
- 39. Hastie, T., Tibshirani, R., Friedman, J.H., Friedman, J.H. 2009. The elements of statistical learning: data mining, inference, and prediction. Springer, 2, 1–758.
- 40. Goel, E., Abhilasha, E., Goel, E., Abhilasha, E. 2017. Random forest: A review. International Journal of Advanced Research in Computer Science and Software Engineering, 7(1), 251–257.
- 41. Hastie, T., Rosset, S., Zhu, J., Zou, H. 2009. Multi-class adaboost. Statistics and its Interface, 2(3), 349–360.
- 42. Bishop, C.M. 2006. Pattern recognition and machine learning. Springer google schola, 2, 1122–1128.
- 43. Hastie, T., Tibshirani, R., Friedman, J., Hastie, T., Tibshirani, R., Friedman, J. 2009. Boosting and additive trees. The elements of statistical learning: data mining, inference, and prediction, 337–387.
- 44. Blu, T., Thévenaz, P., Unser, M. 2004. Linear interpolation revitalized. IEEE Transactions on Image Processing, 13(5), 710-719.
- 45. Jolliffe, I.T., Cadima, J. 2016. Principal component analysis: a review and recent developments. Philosophical transactions of the royal society A: Mathematical, Physical and Engineering Sciences, 374(2065), 20150202.
- 46. Al-Mukhtar, M., Srivastava, A., Khadke, L., Al-Musawi, T., Elbeltagi, A. 2024. Prediction of irrigation water quality indices using random committee, discretization regression, REPTree, and additive regression. Water Resources Management, 38(1), 343–368.
- 47.Bhagat, S.K., Tiyasha, T., Tung, T.M., Mostafa, R.R., Yaseen, Z.M. 2020. Manganese (Mn) removal prediction using extreme gradient model. Ecotoxicology and Environmental Safety, 204, 111059.
- 48. Bhagat, S.K., Paramasivan, M., Al-Mukhtar, M., Tiyasha, T., Pyrgaki, K., Tung, T.M., Yaseen, Z.M. 2021. Prediction of lead (Pb) adsorption on attapulgite clay using the feasibility of data intelligence models. Environmental Science and Pollution Research, 28, 31670-31688.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6ea4558-274e-4856-b395-56381df324b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.