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Abstract 
 

The general model of a complex system changing its safety structure, its components safety parameters and its 

operation cost during the variable operation process and linear programming are applied to optimize the system 

operation process in order to get the system operation cost optimal values. The optimization problem allowing 

to find the optimal values of the transient probabilities of the complex system operation process at the particular 

operation states that minimize the system unconditional operation cost mean value in the safety states subset 

not worse than a critical system safety state under the assumption that the system conditional operation cost 

mean values in this safety state subset at the particular operation states are fixed is presented. Further, the 

procedure of finding the optimal values operation cost is presented and applied to the exemplary complex 

technical system. 

 

1. Introduction 
 

To tie the investigations of the complex technical 

system safety together with the investigations of its 

operation the semi-Markov processes models can be 

used to describe this system operation processes [1]-

[6]. These models, under the assumption on the 

system structure multistate model [11]-[14] can be 

used to construct the general safety model of the 

complex multistate system changing its safety 

structure and its components safety parameters 

during variable operation process [3]-[6]. Further, 

using this general model, it is possible to find the 

complex system main safety characteristics such as 

the system safety function, the system mean lifetimes 

in system safety subsets and risk function [4]-[6] and 

its operation process cost. Having these 

characteristics it is possible to optimize the system 

operation process to get their optimal values [7]-[10]. 

To this end the linear programming [1] can be 

applied for minimizing the system operation cost. 

 

2. Paper preparation 
 

Considering the equation (23) in [6] for the system 
unconditional safety function by the analogous way 
we may introduce the instantaneous system operation 
cost on the form of vector   

  ),( tC = [1, ),1,(tC ..., ),( ztC ],                            (1) 

 
with the coordinates given by  
 

   ),( utC
)(

1

]),([ b
v

b
b utp



 C  for 0t ,                     (2) 

 
   ,,...,2,1 zu         

 

where ,)],([ )(butC ,,...,2,1 zu  ,,...,2,1 b  are the 

coordinates of the system conditional instantaneous 
operation costs in the safety state subsets 

},,...,1,{ zuu  ,,...,2,1 zu   at the system operation 

states ,bz  ,,...,2,1 b  and ,bp  ,,...,2,1 b  are 

the system operation process limit transient 
probabilities determined in [6]. Thus, it is naturally 
assumed that  the system instantaneous operation 
cost depends significantly on the system safety state 
and the system operation state as well. This 
dependency is also clearly expressed in the linear 
equation  
 

   





1

)()(
b

bb ucpuc                                                  (3) 

 
for the mean value of the system total unconditional 
operation costs in the safety state subsets 
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},,...,1,{ zuu   ,,...,2,1 zu   where ),(ucb  

,,...,2,1 b  ,,...,2,1 zu   are the mean values of the 

system total conditional operation costs in the safety 
state subsets },,...,1,{ zuu  ,,...,2,1 zu   at the  

particular system operation states ,bz  ,,...,2,1 b  

determined by  
 

  )(ucb ,)],([ )(
)(

dtut b
ub

C
0





                                    (4) 

,,...,2,1 zu  ,,...,2,1 b  where  

 

   )]([)( )( uTEu b
b    

 
are the mean values of the system conditional 

lifetimes )()( uT b  in the safety state subset 

},...,1,{ zuu   at the operation state ,bz  ,,...,2,1 b  

given by 
 

   


0

)( ,)],([)( dtutu b
b S  ,,...,2,1 zu                    (5)                                                                                   

 

and 
)()],([ butS , ,,...,2,1 zu   ,,...,2,1 b  are the 

system safety function defined by (22) in [6] and bp  

are given by (20) in [6]. 

 

3. System operation cost minimization 
 

From the linear equations (3), we can see that the 

mean value of the system total unconditional 

operation cost ),(uc  ,,...,2,1 zu   is determined by 

the limit values of transient probabilities ,bp  

,,...,2,1 b  of the system operation process at the 

operation states ,bz ,,...,2,1 b  and by the mean 

values )(ucb  of the system total conditional 

operation costs in the safety state subsets 

},,...,1,{ zuu  ,,...,2,1 zu   at the  particular system 

operation states ,bz  ,,...,2,1 b  that by (4) are 

dependent on the mean values )(ub , ,,...,2,1 b  

,,...,2,1 zu   of the system conditional lifetimes and 

by the system conditional instantaneous operation 

costs 
)()],([ butC  in the safety state subsets 

},,...,1,{ zuu  ,,...,2,1 zu   at the system operation 

states ,
b

z  .,...,2,1 b  

Therefore, the system operations cost optimization 

based on the linear programming [1], [4], can be 

proposed. Namely, we may look for the 

corresponding optimal values ,bp  ,,...,2,1 b  of 

the transient probabilities ,
b

p  ,,...,2,1 b  of the 

system operation process at the operation states to 

minimize the mean value )(uc  of the system total 

unconditional operation costs in the safety state 

subsets },,...,1,{ zuu  ,,...,2,1 zu   under the 

assumption that the mean values )(ucb , ,,...,2,1 b  

,,...,2,1 zu   of the system total conditional 

operation costs in the safety state subsets 

},,...,1,{ zuu  ,,...,2,1 zu   at the  particular system 

operation states ,bz  ,,...,2,1 b  are fixed. As a 

special and practically important case of the above 

formulated system operations cost optimization 

problem,  if ,r  ,,...,2,1 zr   is a system critical 

safety state, we may look for the optimal values ,bp  

,,...,2,1 b  of the transient probabilities ,bp  

,,...,2,1 b  of the system operation process at the 

system operation states to minimize the mean value 

)(rc  of the system total unconditional operation 

costs in the safety state subset },,...,,1,{ zrr 

,,...,2,1 zr   under the assumption that the mean 

values )(rcb , ,,...,2,1 b  ,,...,2,1 zr   of the 

system total conditional operation costs in this safety 

state subsets are fixed. More exactly, we may 

formulate the optimization problem as a linear 

programming model with the objective function of 

the following form 

 

   




1

)()(
b

bb rcprc                                   (6) 

 
for a fixed },...,2,1{ zr  and with the following 

bound constraints 
       

   ,bbb ppp


  ,,...,2,1 b  





1

,1
b

bp                   (7) 

 

where )(rcb , ,0)( rcb  ,,...,2,1 b  are fixed mean 

values of the system conditional operation costs in 
the safety state subset },...,1,{ zrr   and  

 

   ,bp


 10  bp


 and  

 
   ,bp


 ,10  bp


,bb pp


   ,,...,2,1 b             (8) 

 
are lower and upper bounds of the unknown transient 

probabilities bp , ,,...,2,1 b  respectively.  

Now, we can obtain the optimal solution of the 

formulated by (6)-(8) the linear programming 

problem, i.e. we can find the optimal values bp  of 

the transient probabilities ,bp  ,,...,2,1 b  that 

minimize the objective function given by (6).  

First, we arrange the mean values of the system total 

conditional operation costs ),(rcb  ,,...,2,1 b  in 

non-decreasing order 
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   )(
1

rcb )(
2

rcb . . . ),(rcb
  

 

where },...,2,1{ ib  for .,...,2,1 i  

Next,  we substitute  
 

   
ibi px  , 

ibi px


 , 
ibi px


  for  ,...,2,1i   (9) 

 

and we minimize with respect to ,ix  ,,...,2,1 i  

the linear form (6) that after this transformation takes 
the form  
 

   





1

)()(
i

ibi rcxrc                                                 (10) 

 
for a fixed },...,2,1{ zr  with the following bound 

constraints 
 

   ,iii xxx


 ,,...,2,1 i  





1

,1
i

ix                    

(11)   
 

where ),(rc
ib  ,0)( rc

ib  ,,...,2,1 i  are fixed 

mean values of the system conditional operation 
costs in the safety state subset },...,1,{ zrr   

arranged in non-decreasing order and  
 

   ,ix


 10  ix


 and ,ix


 ,10  ix


 ,ii xx


      (12)   

          
   ,,...,2,1 i   

 
are lower and upper bounds of the unknown 

probabilities ix , ,,...,2,1 i  respectively.  

To find the optimal values of ,ix  ,,...,2,1 i  we 

define 
  

   




1

,
i

ixx


 xy


1ˆ                                            (13) 

 
and 
 

   ,00 x


 00 x


  and 


I

i
i

I xx
1

,


 


I

i
i

I xx
1


     (14) 

 
for .,...,2,1 I                                                             

Next, we find the largest value },...,1,0{ I  such 

that  
 

   yxx II ˆ


                                                       (15) 

 
and we fix the optimal solution that minimize (10) in 
the following way:  
 
i) if ,0I  the optimal solution is  

 

   11
ˆ xyx


   and ii xx


   for ;,...,3,2 i           (16)  

 
ii) if ,0  I  the optimal solution is  

 

   ii xx


   for ,,...,2,1 Ii  11
ˆ

  I
II

I xxxyx


   

 

   and ii xx


   for  ;,...,3,2  IIi                  (17) 

                  
iii) if ,I  the optimal solution is  

 

   ii xx


   for .,...,2,1 i                                      (18) 

 
Finally, after making the inverse to (9) substitution, 
we get the optimal limit transient probabilities  
 

   iib xp    for  ,,...,2,1 i                                  (19) 

 

that minimize the mean value of the system total 

unconditional operation costs in the safety state 

subset },,...,1,{ zrr  defined by the linear form (6), 

giving its minimum value in the following form 
 

   




1

)()(
b

bb rcprc                                                (20) 

 
for a fixed },...,2,1{ zr .  

From the expression (20) for the minimum mean 
value )(rc  of the system unconditional operation 

cost in the safety state subset },,...,1,{ zrr   

replacing in it the critical safety state r  by the safety 
state ,u ,,...,2,1 zu   we obtain the corresponding 

optimal solutions for the mean values of the system 
unconditional operation costs in the safety state 
subsets },...,1,{ zuu   of the form  

 

   





1

)()(
b

bb ucpuc   for  .,...,2,1 zu                    (21) 

 
Further, according to (1)-(2), the corresponding 
system optimal unconditional instantaneous 
operation cost is given by the vector   
 

   ),( tC = [1, ),1,(tC ..., ),( ztC ],                           (22) 

 
with the coordinates given by  
 

   ),( utC )(

1

]),([ b
v

b
b utp



C                                   (23) 

 
   for 0t , .,...,2,1 zu      

 
And, the optimal solutions for the mean values of the 
system unconditional operation costs in the particular 
safety states are    
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    ),1()()(  ucucuc  ,1,...,1,  zu  

   ).()( zczc                                                           (24)                                            

  
Moreover, considering (27) and (28) given in [6], the 
corresponding optimal system critical operation cost 
function  
  

   )(tc = 1 - ),,( rtC  ,0t                                       (25)                                                                                          

  
and the optimal moment when the system operation 

cost exceeds a permitted level , respectively are 
given by 
 

    ),(1 
c                                                            (26) 

 

where ),( rtC  is given by (23) for ru   and ),(1 t
c  

if it exists, is the inverse function of the optimal 
critical operation cost function ).(tc  

 

4. Application 
 

We consider the exemplary critical infrastructure, 
considered in [6]. This system safety structure and its 
components safety parameters depend on its 
changing in time operation states with arbitrarily 
fixed the number of the system operation process 
states 3 .   
The considered in [6] system is a “4 out of 6”-series 

system composed of dependent components ,ijE  

,3,2,1i  ,6,...,2,1j  operating at three operation 

states 1z , 2z  and 3z .  

At the operation state 1z  the system is composed of 

three “4 out of 6” subsystems linked in series and 

composed of components ,ijE  ,3,2,1i  .6,...,2,1j  

At the operation state 2z  the system is composed of 

two “4 out of 6” subsystems linked in series and 

composed of components ,ijE  ,2,1i  .6,...,2,1j   

At the operation state 
3z , the system is composed of 

one “4 out of 6” subsystem composed of components 

,ijE  ,1i  .6,...,2,1j   

We arbitrarily assume that the transient probabilities 

of the system at particular operation states 1z , 2z  

and 3z  respectively are [6]  

 

  ,4.01 p  ,4.02 p  .2.03 p                              (27) 

 
We distinguished four safety states of the system 
components 0, 1, 2, 3, i.e. ,3z  and we fix that the 

critical safety state is 2r  [6]. 
We arbitrarily assume that the system conditional 

instantaneous operation costs ,)],([ )(butC  in the 

safety state subsets },,...,1,{ zuu  ,,...,2,1 zu 

,,...,2,1 b  are constant at the system operation 

states ,bz  ,,...,2,1 b  and in the safety subsets 

 },3,2,1 },3,2{ },3{ are given in the Table1 bellow 

Table 1. The values of the conditional instantaneous 

operation costs ,)],([ )(butC ,3,2,1b  ,3,2,1u  of 

the system total conditional operation costs in the 

safety state subsets  },3,2,1 },3,2{ }.3{  

)()],([ butC  1b  ,2b  ,3b  

1u  89 286 389 

2u  29 103 130 

3u  10 40 50 

 

Considering the mean values )]([)( )( uTEu b
b   of 

the system conditional lifetimes )()( uT b
 in the safety 

state subset },...,1,{ zuu   at the operation state ,bz  

,,...,2,1 b   

 

   )1(1  = 0.28, )2(1  =  0.14, )3(1  = 0.09,                      

 
   )1(2  = 0.69, )2(2  = 0.34, )3(2  = 0.23,  

                   
   )1(3  = 1.5, )2(3  = 0.75, )3(3  = 0.50,                           

 
calculated in [6] and applying the formula (4) we get 

the approximate mean values )(ucb , ,3,2,1b  

,3,2,1u  of the system total conditional operation 

costs in the safety state subsets  },3,2,1 },3,2{ },3{  

given in the Table2 bellow. 

Table 2. The mean values )(ucb , ,3,2,1b  

,3,2,1u  of the system total conditional operation 

costs in the safety state subsets  },3,2,1 },3,2{ }.3{  

)(ucb  1b  ,2b  ,3b  

1u  25 40 35 

2u  20 35 30 

3u  15 30 25 

Taking )(ucb  ,3,2,1b ,3,2,1u  from Table 2 and 

the transient probabilities bp , ,3,2,1b (27) the 

mean values of the system total unconditional 

operation costs in the safety state subsets  },3,2,1

},3,2{ },3{ according to (3) are 

 

   )1(c )1(11cp )1(22 cp )1(33cp  

 
            254.0  404.0  352.0   = 33,           (28) 

 

   )2(c )2(11cp )2(22 cp )2(33cp  

 
             204.0  354.0  302.0   = 28,          (29) 
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   )3(c )3(11cp )3(22 cp )3(33cp  

 

           154.0  304.0  252.0  = 23.             (30) 

 
To find the optimal values of those system cost 
characteristics, we conclude that the objective 
function defined by (6), in this case, as the system 
critical state is 2r , according to (29), takes the 
form  
 

   )2(c   201p 352p 303 p .                     (31) 

 

Arbitrarily assumed, the lower bp


 and upper bp


 

bounds of the unknown optimal values of transient 

probabilities bp , ,3,2,1b  respectively are: 

 

   3.01 p


, 3.02 p


, 1.03 p


 

 

   5.01 p


, 5.02 p


, 3.03 p


. 

 
Therefore, according to (7)-(8), we assume the 
following bound constraints  
 

   ,5.03.0 1  p ,5.03.0 2  p .3.01.0 3  p (32)   

 

    


3

1

.1
b

bp                                                      (33) 

 

Now, before we find optimal values 
b

p  of the 

transient probabilities ,bp  ,3,2,1b  that minimize 

the objective function (31), we arrange the mean 
values of the system conditional operation cost 

),2(bc  ,3,2,1b  in non-decreasing order  

 

   )2(1c )2(3c ).2(`2c                                       (34) 

 
Further, according to (9),  we substitute  
 

   ,
11

px   ,32 px   ,23 px                               (35) 

                                                      
and  
 

   ,3.0
11
 px


 ,1.032  px


 ;3.023  px


    

                                                    

   ,5.0
11
 px


 3.032  px


, ,5.023  px


   (36) 

 
and we minimize with respect to ,ix  ,3,2,1i  the 

linear form (31)  that according to (10)-(12) takes the 
form  
 

   )2(c   201x 302x ,353 x                        (37) 

with the following bound constraints 

   ,5.03.0 1  x  ,3.01.0 2  x  .5.03.0 3  x (38) 

 

    


3

1

.1
i

ix                                                              (39) 

 
According to (13), we calculate   
 

    


3

1

,7.0
i

ixx


 xy


1ˆ  = 1 -  0.7 = 0.3           (40) 

 
and according to (14), we determine    
 

   ,00 x


 00 x


,  ,000  xx


 

 

   ,3.01 x


 ,5.01 x


 ,2.011  xx


 

 

   4.02 x


 ,8.02 x


 ,4.022  xx


 

 

   ,7.03 x


 ,3.13 x


 .6.033  xx


              (41) 

 
From the above, as according to (40), the inequality 
(15) takes the form  
 

   ,3.0 II xx


                                                     (42) 

 
it follows that the largest value }3,2,1,0{I  such 

that this inequality holds is .1I  
Therefore, we fix the optimal solution that minimize 
linear function (37) according to the rule (17). 
Namely, we get  
 
   ,5.011  xx


  

 

   
2

11
2

ˆ xxxyx


  ,2.01.03.05.03.0   

 

   .3.033  xx


                                                     (43) 

 
Finally, after making the inverse to (19) substitution, 
we get the optimal transient probabilities 
  

   ,5.011  xp  ,3.032  xp  ,2.023  xp      (44) 

 
that minimize the mean value of the exemplary 
system total unconditional operation costs )2(c  in the 

safety state subset }3,2{  expressed by the linear 

form (31) giving, according to (20) and (44), its 
optimal value  
 

   )2(c   201p 352p 303 p  

 
                  205.0 353.0 302.0   26.5    (45) 
 
Substituting the optimal solution (44) into the 
formula (21), we obtain the optimal solution for the 
mean values of the exemplary system total 
unconditional operation costs in the safety state 
subsets }3,2,1{  and },3{ that are as follows  
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   )1(c  251p 402p 353 p  

 
           255.0 403.0 352.0   31.5,           (46) 
       

   )3(c  151p 302p 253 p  

 
           155.0 303.0 252.0   21.5,           (47) 
 
and according to (24), the optimal values of the mean 
values of the considered exemplary system 
unconditional operation costs in the particular safety 
states 1, 2 and 3, respectively are  
 

   5)2()1()1(  ccc  ,  

 

   5)3()2()2(  ccc     

 

   .5.21)3()3(  cc                                              (48) 

 

5. Conclusion 
 

The procedure of using the general safety analytical 
model of complex multistate technical systems 
related to their operation processes prezented in [4] 
and the liner programing [1] was presented to the 
optimization of the operation processes and cost of 
complex system. Next the procedure was applied to 
the optimization of an exemplary “m out of l”-series 
critical infrastructure operation cost. The mean 
values of the considered system total unconditional 
operation costs were evaluated and minimize after its 
operation process optimization. 
Presented in this paper tools can be useful in 

operation cost optimization of a very wide class of 

real technical systems operating at the varying 

conditions that have an influence on changing their 

safety structures and their components safety 

parameters. The results can be interesting for safety 

practitioners from various industrial sectors. 
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