
This article was downloaded by: [185.55.64.226]
On: 19 March 2015, At: 11:27
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Occupational
Safety and Ergonomics
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/tose20

Theoretical Analysis of Percussive
Tests of Products
Ryszard Koryckia
a Central Institute tor Labour Protection, Poland
Published online: 08 Jan 2015.

To cite this article: Ryszard Korycki (1998) Theoretical Analysis of Percussive Tests of Products,
International Journal of Occupational Safety and Ergonomics, 4:4, 423-448

To link to this article:  http://dx.doi.org/10.1080/10803548.1998.11076403

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the
“Content”) contained in the publications on our platform. However, Taylor & Francis,
our agents, and our licensors make no representations or warranties whatsoever as to
the accuracy, completeness, or suitability for any purpose of the Content. Any opinions
and views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content
should not be relied upon and should be independently verified with primary sources
of information. Taylor and Francis shall not be liable for any losses, actions, claims,
proceedings, demands, costs, expenses, damages, and other liabilities whatsoever
or howsoever caused arising directly or indirectly in connection with, in relation to or
arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &
Conditions of access and use can be found at http://www.tandfonline.com/page/terms-
and-conditions

http://www.tandfonline.com/loi/tose20
http://dx.doi.org/10.1080/10803548.1998.11076403
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


INTERNATIONAL JOURNAL OF 

OCCUPATIONAL SAFETY AND ERGONOMICS 1998, VOL. 4, NO. 4, 423-448

Theoretical Analysis 
of Percussive Tests of Products

Ryszard Korycki

Central Institute tor Labour Protection, Poland

The goal of theoretical research is to establish parameters, which have to be 
given in standards for percussive tests of products. Those parameters are 
essential for each user to be able to construct identical (equivalent) testing 
equipment. This would ensure identical results for identical products.

The paper presents a detailed analysis of the distribution and the value 
of the forces generated during percussive collisions of two bodies. Elastic, 
plastic, and elastoplastic collisions are considered. Parameters determining the 
coefficient of restitution, the courses of energy, momenta, and the values of 
the forces in colliding elements are determined. The dynamic force acting on 
a product during a percussive test was studied.

dynamics percussive tests parameters analysis energy theory

1. INTRODUCTION

Every product, especially personal protective equipment, has specific 
application requirements. Percussive tests make testing those features 
possible. This can be done at special test stands only. The kinds of tests 
as well as the testing methods are determined by new European 
standards.

Purchasing test stands for percussive tests of products imposed by 
the Polish standard PN-79/Z-08020 (Polski Komitet Normalizacji, Miar 
i Jakosci, 1979) and by European standards is impossible. Test stands 
like that are not available. There are a few custom-built stands for 
dynamic tests of products in the largest and best-equipped West 
European research institutes. Those test stands are used for research, for

Correspondence and requests for reprints should be sent to Ryszard Korycki, 
Central Institute for Labour Protection, ul. Wierzbowa 48, 90-143 Lodz, Poland.
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424 R. KORYCKI

services for the industry, and for certification. All research is strictly 
confidential and its results are not published except for the results of 
certification research.

Those who create technical standards often do not know the theory 
of percussive tests or the dynamic interaction between elements. The 
standards impose parameters to be tested as well as methods to be used 
in testing those parameters. Frequently, however, the standards do not 
contain all the parameters necessary for creating identical test condi­
tions, which makes achieving comparable test results impossible. This 
can be observed in the old Polish standard PN-79/Z-08020 (Polski 
Komitet Normalizacji, Miar i Jakosci, 1979), the new European standard 
EN 397:1995 (Comite Europeen de Normalisation, 1995), and the 
national standards BS 5240:Part 1:1987 (British Standard, 1987), DIN 
4840:1981 (Deutsches Institut fur Normung, 1981) on testing industrial 
safety helmets and testing harness preventing falls from a height with 
the use of a rigid dummy.

Using theoretical literature on percussive tests and the dynamic 
phenomena that occur at collision, requires mastery of technical dy­
namics. This drastically limits the number of users who can be critical of 
the implemented standards.

In international literature, there is no comprehensive discussion of 
the problems of theoretical and empirical percussive tests, or of the 
practical use of standards. There are only a few publications dealing 
with those problems (e.g., Hoppmann, 1988; Timoshenko & Goodier, 
1951) and a relatively great number of publications devoted to the collision 
theory (e.g., Grybos, 1970; Kowalski, 1976; Leyko, 1975; Timoshenko 
& Young, 1962). This paper is devoted to a theoretical analysis of 
percussive tests. The second part, which develops those problems as 
a practical application of the existing stands, is now in preparation.

The results of theoretical considerations are used in tests of industrial 
safety helmets. Two basic percussive tests of helmets imposed by both 
the Polish standard PN-79/Z-08020 (Polski Komitet Normalizacji, Miar 
i Jakosci, 1979) and by foreign standards (e.g., EN 397:1995; Comite 
Europeen de Normalisation, 1995) are
• the shock absorption test, in which the force transferred from the 

helmet to the model of a head is measured; and
• the resistance to penetration test, in which the fact that the punch 

touches the model of a head is established (this takes place when the 
helmet is punctured).
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ANALYSIS OF PERCUSSIVE TESTS 425

The operation of the stand is in both cases identical. The differences 
consist in the shape and the size of the falling mass m.\ and the 
registration of the results. Figure 1 shows a diagram of a stand for 
percussive tests of industrial safety helmets.

Figure 1. A stand for percussive tests of industrial safety helmets. Notes. 1— striking 
mass m{, 2— guide poles; 3— struck mass m2; 4— base of the helmet with a device for 
electronic measurement of the striking force; 5— electromagnetic release of mass m<, 
6— a jack for mass m \̂ 7— monolith concrete foundation; 8— electronic measurement of 
the impact velocity of mass m{, h— fall height.

The operation of the device is very simple. The striking mass m, 
lifted by a jack (No. 6 in Figure 1) falls freely on the stationary product 
of mass m2 situated on the following structure: the headform—the 
basis—the monolith concrete foundation. All parts of this structure are
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426 R. KORYCKI

fixed to one another, the summary mass is greater than 500 kg, so 
consequently they are practically immovable. Guide poles (No. 2 in 
Figure 1) and a vertical positioning of the stationary mass m2 in relation 
to the striking mass m { ensure a simple central collision. A release device 
(e.g., the electromagnet, No. 5 in Figure 1) is used to release mass m\.

It is difficult to construct
• electronic devices for measuring the velocity of mass when it 

strikes mass m2, and the dynamic force acting on mass m2 when it is 
struck by mass and

• a test stand with a rigid frame, maximally reduced friction of the 
guide poles, and a monolith concrete foundation of over 500 kg.

The helmet (the product) is fixed on the headform by using a strap 
system made of elastic material. The helmet during the collision can be 
characterized by the following assumptions:
• the punch strikes centrally in the crown part of the helmet (the 

product). There is also a central collision of the two masses. Thus, the 
dynamic force operating during the strike is located centrally in 
relation to the straps and is wholly transmitted on the basis, taking 
into consideration the small values of the strap displacements. The 
displacements of the strap system caused by the collision can also be 
neglected. The calculated and analyzed movement of the stationary 
mass m2 after the strike is also a result of the collision of the two 
masses and is characterized by the coefficient of restitution k;

• the energy dissipation during the collision caused by the elastic straps 
is relatively small, too;

• there is no equality between the elastic straps and the elastic support 
as described, for example, by Hoppmann (1988) in relation to the 
mass striking an elastic plate. The straps do not generate the return 
impulse of the form and the value shown, for example, for this plate. 
In addition, it is difficult to define the interaction and the mathematical 
description of the dynamic response for the straps during the collision 
contact.

We can also assume that a model of the collision phenomenon is the 
falling mass m, striking centrally the stationary mass m2. The physical 
model can be obtained by a concentration of masses m\ and m2 in both 
centres of gravity. Both masses are perfectly elastic and the model can 
be next described as the concentrated mass m, falling centrally on the
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428 R. KORYCKI

concentrated stationary mass m2. The falling height can be also defined 
as the initial distance between these two centres of gravity, that is, for 
velocity V\ =  0.

The technical stands developed so far, impose only two or three 
parameters determining the conditions for conducting tests of shock 
absorption and resistance to penetration (Table 1).

Considerable differences in parameters can be observed in this 
comparison. This is caused by the fact that the authors of standards do 
not always quote all the parameters that have a decisive influence on the 
course of a dynamic collision of two bodies. The differences in the 
values of the dynamic forces acting on mass m2 of the same product 
according to the standards listed in Table 1 reach 18%. Research 
resulted in establishing all the parameters of a collision of two bodies. 
The results of the theoretical research were used in the preparation of 
an updated Polish standard PN-86/Z-08110/08 (Polski Komitet Norma- 
lizacji, Miar i Jakosci, 1986).

In dynamic tests—particularly percussive ones—it is difficult to 
determine the kinds, values, and courses of the energies, momenta, and 
forces in the colliding bodies. These difficulties occur in both theoretical 
analysis and tests. This is a result of the impulse effect of the forces in 
colliding bodies. They usually run from 0.01 to 0.0001 s.

The theoretical analysis consists of three basic parts:
1. In the first part, theoretical mechanics was used to analyse the 

influence of the coefficient of restitution on the collision of two 
bodies (on the kind of collision, on the loss of kinetic energy of the 
colliding masses, and on the transfer of kinetic energy between the 
colliding bodies during the collision).

2. The basic part consisted of a detailed analysis of the collision of the 
two masses, in order to describe the phenomena that take place and 
to establish all the parameters that have a decisive influence on the 
course and the value of these phenomena. Particular attention was 
paid to the courses of energy in the colliding masses. The main aim 
of the analysis was to determine the striking force on the struck mass 
during the collision. Without a knowledge of that force and the 
parameters that determine its volume and course, it is impossible to 
optimize the product (the helmet).

3. The third part consisted of an analysis of the obtained results. The 
courses of the functions were studied, their extreme values and all 
parameters describing the course of a percussive test of a product
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ANALYSIS OF PERCUSSIVE TESTS 429

were determined. It was decided which of the parameters have to be 
quoted in standards in order to enable different users to achieve 
identical test results for identical products.
This theoretical analysis is used in tests and research concerning the 

evaluation of industrial safety helmets, that is, personal protective 
equipment. Both changing existing standards and constructing test 
stands is involved. In particular,
1. It was demonstrated that percussive tests conducted according to the 

Polish standard PN-79/Z-08020 (Polski Komitet Normalizacji, Miar 
i Jakosci, 1979) give higher-value results in relation to the results of 
tests conducted according to similar West European standards. The 
analysis described in this paper was used in the preparation of the 
Polish standard PN-86/Z-08110/08 (Polski Komitet Normalizacji, 
Miar i Jakosci, 1986).

2. The results of the analysis were used in creating technical docu­
mentation, construction, and operation of a modernized stand for 
percussive tests of industrial helmets in the Central Institute for 
Labour Protection in Lodz, Poland.

3. The obtained results were used in creating a rigid dummy for 
dynamic tests of personal protective equipment used to protect 
against falls from a height.

2. THE INFLUENCE OF THE COEFFICIENT 
OF RESTITUTION ON THE DYNAMICS 
OF THE COLLISION OF TWO BODIES

If two material bodies collide, big instantaneous forces F{t), called the 
instantaneous force impulse, occur in a very short time

n  =  °J F (t)d t  (1 )

Determination of the value and the course of this impulse by 
analytical methods is very difficult. All known calculation methods are 
approximate. That is why, in addition to theoretical analyses, precise 
experimental proofs are always necessary. The proofs are difficult to 
accomplish because the impulse occurs in a very short time of 0.01 to
0.0001 s.
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430 R. KORYCKI

In order to characterize the degree of collision elasticity, Newton 
introduced into mechanics the so-called coefficient of restitution. The 
problem was then developed as the generalized collision theory by 
Hertz, Sztajerman, Saint Yenant, Sears, and Timoshenko (Timoshenko & 
Goodier, 1951; Timoshenko & Young, 1962). The coefficient of restitu­
tion has the form of a proper function and shows which part of the 
impulse during the first phase is recovered in the second phase of the 
collision (a reduction of the instantaneous force)

where k  is the coefficient of restitution, Hi is the force impulse in the 
first phase of the monotonic increase, n2 is the force impulse in the 
second phase of the monotonic decrease to zero.

The coefficient of restitution k  can be defined most simply by using 
the collision of two bodies, preferably balls. The simplest situation 
occurs for a simple central collision of two balls.

The first collision phase begins at the moment of the contact of the 
two colliding balls. It lasts until the local deformations at the contact 
point of the balls have caused speed equalization for the centres of the 
gravity. They now have the same velocity V. During this time, the 
interaction forces of the balls grow from zero to the maximal value.
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ANALYSIS OF PERCUSSIVE TESTS 431

The local deformations of the balls are reduced to zero in the second 
collision phase. Thus, the interaction force of the balls is reduced to zero. 
The common velocity V  changes into two different values, V[ and V2.

Using the equation of momentum, the following can be written for 
each ball

mtV — m{V\ = — Hi (3a)
m2V — m2V2 — n , (3b)

where IT denotes the reaction force impulse of the ball of mass mt on 
the ball of mass m2 in the first collision phase.

On the basis of Equations 3a and 3b, the common velocity V  has the 
following form

V = m,V] +  m2Vl (4)m x +  m 2

Denoting now as n 2 the reaction force impulse of the ball of mass 
mi on the ball of mass m2 in the second collision phase, the equation of 
momentum takes the following form

mxV[ -  mxV = - n 2 
m2V'2 — m2V = II2

After introducing the coefficient of restitution k, the following can be 
expressed

n 2 = ffl, (6)

Using now Equations 3 a, 3b, 4, and 5 in Equation 6, the values of the 
velocities for the balls after the collision have the following forms

and

y, _  (mi -  km2) Vi + (1 + k)m2V2
1 mx + m2

T„ ( " * 2  -  km{)V2 + (1 + k)mxVx
V 2 — ;-------------------------m\ +  m 2

From  the difference between VI and V2 comes, on the basis of 
Equations 7 and 8, after some transformations, the form of the 
coefficient of restitution
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432 R. KORYCKI

A number of very useful conclusions can be drawn from Equation 9:
1. Bodies after and before collision have the same relative velocity ratio, 

which depends on the two tested materials.
2. The coefficient of restitution k  depends only on the materials of 

colliding masses, which determine their elastic properties.
3. The coefficient of restitution k  does not depend on the velocity of 

masses m x and m2 of the two colliding bodies.
4. The coefficient of restitution k  does not depend on the duration of 

the collision.

3. THE INFLUENCE OF THE COEFFICIENT 
OF RESTITUTION k ON KINETIC ENERGY 

LOSS DURING THE COLLISION
Real bodies have the value of the coefficient of restitution A: on a scale

0 <  k  ^  1 (10)

The values of the coefficient of restitution k  for some materials with 
technical application have been listed in Table 2.

TABLE 2. Values of the Coefficient of Restitution k

Material of Striking Mass Material of Struck Mass k

glass glass .94
ivory ivory .85
cast iron cast iron .66
steel steel .56
wood wood .50
steel lead .20

The values referred to in Table 2 and in professional literature are 
defined with the following assumptions:
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ANALYSIS OF PERCUSSIVE TESTS 433

• both bodies are made of the same material,
• the striking body is assumed to be perfectly elastic and the struck 

body is made of a material listed in Table 2.
The influence of the coefficient of restitution on kinetic energy loss 

for the colliding masses is easy to define for a central collision. In this 
case, the mass strikes pointwise a stationary barrier, perpendicular to its 
surface. For a mass striking a stationary barrier, two values in Equation 
9 are zero, that is,

Equation 9, which defines the coefficient of restitution k, now has the 
following form

The difference of the kinetic energy after and before the collision is 
equal to

On the basis of Equation 13, the smaller the coefficient of restitution k, 
the bigger the kinetic energy loss.

In the first collision phase, the colliding surfaces of the two bodies are 
in pointwise contact. The surfaces of the bodies at the contact point 
have a common normal line called the collision line. If the velocity 
vectors for the common points of the moving bodies are placed along 
the collision line, the collision is called a simple collision. For the 
velocity vectors inclined at an angle, the collision is called a slant 
collision.

During a simple collision, the instantaneous forces are situated along 
the collision line. If the centres of the colliding masses are placed on the 
collision line, the collision is called a central (middle or frontal)

F2 = 0; V2 = 0 ( 11)

(12)

, _  E  _  m ^ V ,)2 _  m , k (V i )2 m x( V i)2 m,(F,)
'2 1 2 2 ~ 2 2 Y ~ (k2- \ )  (13)

4. A CENTRAL COLLISION OF TWO BODIES
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434 R. KORYCKI

collision. If the centres of masses are not situated on the collision line, 
the collision is called an eccentric or off-centre collision.

Depending on the material elasticity of the colliding masses, there 
are three types of collisions: (a) elastic, (b) plastic, and (c) inelastic 
(elastoplastic) collisions.

During an elastic collision, there is no loss of kinetic energy. During 
a plastic collision, the whole kinetic energy is lost. During an elastoplastic 
collision, only part of the kinetic energy is lost. The lost part is 
transformed into heat.

In technology, practically only elastoplastic collisions are encountered. 
The value of kinetic energy loss can be found by means of the coefficient 
of restitution k. A change of the coefficient k  causes a change of kinetic 
energy loss.

In order to execute model calculations, we can take into account 
a very easy, common case. A moving mass falls and strikes an elastic 
mass fixed on a heavy stationary base. All collisions of bodies in both 
vertical and horizontal planes can be explained in this way. The path of 
the centre of the falling freely mass is perpendicular to the surface of the 
base and it contains the centre of the falling mass. If this path contains 
the centre of the struck mass (and if the contact surface during the 
collision is spherical), the collision is called a central collision.

The impulse forces existing during the contact of colliding masses 
are internal forces. For this kind of collision, other forces can be 
disregarded. Now, the projection of the momentum vector on the axis 
connecting the centres of the masses has a constant value because the 
external forces are equal to zero. After the collision, the bodies begin to 
move with velocities V\ and V'i also directed along the line that connects 
the centres of masses. It follows that the momentum before and after 
the collision has the same value. Thus, we have the following equation 
describing the conservation of momentum law

m.\V\ +  m2V2 = m{V[ + m2V'2 (14)

Equation 14 has two unknowns, V[ and V\. The second equation is 
obtained as an equation characterising the kind of existing collision, 
that is, elastic, plastic, or inelastic. It all depends entirely on the 
elasticity of the materials used in constructing the colliding bodies.

Let us analyze the particular collision cases of the masses: a central 
elastic and a central plastic collision. Neither is very often encountered
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ANALYSIS OF PERCUSSIVE TESTS 435

in practice but this formulation is very convenient and can show the 
velocity range of the masses. It means the real existing velocities of the 
inelastic colliding masses should have the value from the calculated 
range.

5. A CENTRAL ELASTIC COLLISION OF MASSES
For a central collision, both colliding masses are treated as an isolated 
system. Their interactions are elastic, that is, conservative. The principles 
of the conservation of momentum and of the conservation of energy must 
be fulfilled for this system

m,Fi + m2V2 = mxV[ + m2V\ (15a)
m,Vf m2V\ m\(V[)2 m2(V '2)2 —  + —  -  - j -  +  - y -  (15b)

The velocities of the two bodies after the collision can be obtained by 
solving Equations 15a and 15b

and

_  +
m2 +  m, m2 +  mi

Vi = + —— — Vi (17)m2 + mx m2 + mx

6. A CENTRAL PLASTIC COLLISION OF MASSES
The mechanical energy of the system changes during an inelastic 
collision. Part of the energy turns into thermal energy, which increases 
the temperature of the colliding bodies. If the whole kinetic energy of 
the moving balls, in relation to the centre of the mass of the system, 
turns into heat, the central collision of masses is called a plastic collision. 
After the collision, both masses must have the same velocity Vs as the 
centre of the mass of the system. Similarly to an elastic collision, the 
conservation of momentum law has the form of Equation 18

m tV i + m2V2 — m xV\ + m2V 2 (18)
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436 R. KORYCKI

The following expression occurs for an ideal inelastic collision

After solving this system of equations, the velocity of the centre of the 
mass for the system after the collision has the form

7. A CENTRAL INELASTIC COLLISION OF MASSES
During a central inelastic collision, both colliding masses begin to move 
immediately after the collision, with velocities VI and V'i, respectively. 
They are directed along the line connecting the centres of masses. It 
follows that the momentum for the system before and after collision has 
the same value

The same equation of the conservation of momentum law can be 
obtained similarly as in section 2 from Equations 3a, 3b, 5, and 6 , 
which describe the momentum before and after the collision and the 
coefficient of restitution k.

During an inelastic collision, only part of the kinetic energy is lost 
and turned into heat that increases the temperature of both colliding 
masses. In this instance, another equation is necessary in order to solve 
the problem and it defines the relations between velocities V{ and
V '2 immediately after the collision. It can be obtained by means of the 
coefficient of restitution k  showing which part of the kinetic energy is 
lost during the collision and transformed into heat. The ratio of the 
relative velocities for both bodies after and before the collision is equal 
to the coefficient of restitution £. For a mass falling freely on a stationary 
mass fixed on an elastic base, the second equation has the form

(19)

mtV 1 +  m2V2 
mi +  m2 (20)

m\V\ 4 - m2V2 = m\V[ + m2V\ (21)

(22)
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ANALYSIS OF PERCUSSIVE TESTS 437

The velocities of the bodies after the collision can be obtained by using 
both Equations 21 and 22, and they now have the form described by 
Equations 7 and 8  in section 2.

8. KINETIC ENERGY LOSS Eks FOR THE STRIKING 
MASS DURING THE COLLISION

During the collision, each of the colliding masses moving with the 
specified velocity loses part of its kinetic energy. The lost kinetic energy 
is used for elastoplastic deformation and it is turned into heat.

Kinetic energy loss for two colliding bodies, with velocities before 
and after the collision V\ V[ and V2 V2, respectively, can be obtained from 
the expression

In order to solve Equation 23, Equations 7 and 8  are used for the 
components of velocities V[ and V2. Thus, the general expression 
determining kinetic energy loss during the collision of the masses is 
obtained here.

If a moving mass mi strikes a stationary mass m2, both Equation 23 
and Equations 7 and 8  can be simplified. The calculations according to 
Equation 23 are simplified and shortened. This kind of percussive action 
of the moving mass mi on the stationary mass m2 can be used for testing 
safety helmets. The velocity for the struck mass m2 at the moment of the 
strike by mass m\ is equal to zero (V2 = 0). Thus, Equations 7 and 8  

defining the velocities of the masses after the collision have the following 
forms

Eks = -zm{ v\ -  (F;)2J + \m 2 Pi -  (V'2)2 (23)

=  a/2Ek\
\ J m A  1 — k

m2

mx (24)mi +  m2

and
(25)

The last components on the right side of Equations 24 and 25 have been 
obtained by using the principle of the equality of kinetic and potential
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438 R. KORYCKI

energy Ek\ = EPi and the expression V\ =  \j2gh ,. The equation defining 
kinetic energy loss for the striking mass now has the form

r  1Eks =

After using Equations 24 and 25 in Equation 26, the simplified form 
after some transformations can be described as follows

( I - * } - ? -  P7)2  m! +  m2

Equation 27 can be expressed after simple transformations as a function 
of kinetic energy

Eu = Ekl{ 1 -  k 2) m2  (28)
mx + m2

Equation 27 can be also expressed differently, as a function of potential 
energy

E^ = Epl(l -  k 2) m-- (29)mx + m2
An analysis of Equations 28 and 29 permits the conclusion that the 

value of the falling mass (defined by the symbol m\) has a fundamental 
influence on the kinetic energy loss of the striking mass. Thus, for the 
constant value of the kinetic energy of the falling mass m.\

Ek i = const (30)
changing the fall height of mass mx for the same value of the momentum

mh = m{h\ (31)
the forge impulse changes. This means the effect of its action on the 
struck mass m2 changes, too.

9. KINETIC ENERGY Ek2 OF THE STRUCK MASS m2 
IMMEDIATELY AFTER THE STRIKE

As a result of the strike of the falling mass m x, the stationary mass m2 
begins to move with a certain velocity. The velocity of mass m2 obtained
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this way depends both on the coefficient of restitution k  and on kinetic 
energy loss E ^  of the striking mass mx.

The kinetic energy of the struck mass m2 can be expressed as follows

Eu = ~m2(V2)2 (32)

The velocity of mass m2 after the strike by mass m x can be described by 
Equation 8

ANALYSIS OF PERCUSSIVE TESTS 439

1 P(1 + k)mxVx 
mx + m2 (33)

After some transformations, Equation 33 can be expressed as follows

Ekl = Ekx{ 1 + k f  mf 2 (34)
( m x + m 2y

The expression defining the kinetic energy of the struck mass m2 can be 
described differently. After transformations similar to those of Equation 
27, Equation 33 has the following form

Eki =  EpX( 1 +  k)2 mi™2 (35)(m, + m2y

An analysis of Equations 34 and 35 permits the conclusion that the 
kinetic energy Ekl of the struck mass m2 depends on the value of the 
falling mass m x. The influence of mass m x is very big because it appears 
both in the numerator and in the denominator of Equations 34 and 35. 
If the value of the kinetic energy of the falling mass is constant 
(Ek\ =  const) the fall height of the striking mass has an influence on the 
energy of the struck mass m2 and the effect of the interaction of the 
masses (see Equation 31).

10. THE ENERGY BALANCE OF THE COLLISION
Mass m x falling vertically or moving along another rectilinear path has, 
at the moment of contact with the stationary mass m2, kinetic energy 
proportional to the value of the mass and the square power of the
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440 R. KORYCKI

velocity at the moment of the strike. The energy of the striking mass mi 
from the moment of the contact of both masses until the moment of 
contact loss after the collision can be divided into three parts. These 
parts depend on (a) the values of masses m.\ and m2, (b) mass ratio 
(mi/m2), and (c) the elastic properties of the used materials defined by 
the coefficient of restitution k.

The three parts of energy existing thanks to the division of the 
energy of the striking mass mi can be expressed in the following form
• The striking mass m x rebounds off the surface of mass m2 or moves 

forward. In both cases m x reduces the velocity and conserves part of 
its kinetic energy. Thus, the energy can be calculated from the 
expression

The expression determining the energy conserved by the striking mass 
mi can be obtained using Equation 7

• The second part of the energy appears from the effect of a force

on the elasticity of the bodies. This work is turned into heat. Energy 
loss can be calculated using Equation 28.

• The third part of kinetic energy is transferred to mass m2. The kinetic 
energy received by mass m2 during the collision can be calculated 
using Equation 34.

The sum of kinetic energies before and after the collision together 
with the energy lost during the collision must be equal to

EL = -2 mx (V \f (36)

(37)

impulse and it is turned into the work of body deformation depending

Eki — Ê 'i + +  E«

Eki (1 -  k1) ~ 2 + Ekl (1 + k)2 m\m2 @ $ 0

m\ + m2 (/Mi + m2)2

The equation defining the kinetic energy of mass mi at the moment of
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striking mass m2 can be obtained after some transformations as the 
following identity

„ (mi + m2f  _  Eki — Eki , n 2 — (39)(m, + m 2y

The form of Equation 43 confirms the correctness of each equation used 
to calculate kinetic energy distribution during the collision.
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11. DYNAMIC FORCE Fd, TOTAL FORCE Pc, AND THEIR 
INFLUENCE ON THE BASE OF MASS m2

After collision with mass m x, the struck mass m2 has the velocity, 
according to Equation 29,

=  ( I  +  k J m V ,  
mi + m2

On the other hand, the kinetic energy of mass m2 can be expressed as 
follows

Eh = y n 2(V'2)1 (41)

Mass m2 is fixed on a stationary base on the elastic element. The elastic 
element is pressed or lengthened under the influence of the kinetic 
energy of mass m2. This can be described by the compression or 
elongation value Xd. Thus, the force transmitted by the elastic element 
onto the base grows by the value Fd

FAU = (42)E2A

where / denotes the length or the thickness of the elongated elastic 
element, E2 is Young’s modulus, and A—the cross-section of the 
elongated or compressed element or the pressure surface for the pressure 
on the plane.

Energy Ekl transmitted onto the elastic element turns into the energy 
of elastic deformation Espr
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442 R. KORYCKI

1 „ , 1 F\l 
Pr ~ 2 d d ~  2 E^A (43)

Let us assume the conservative system for which the conservation of 
energy law must be fulfilled. The expression defining the value of the 
dynamic force Fd can be now obtained by comparing Equations 41 
and 43

= ^  = (44)

After solving Equation 44, the expression defining Fd can be expressed 
in the following three forms

_ m2V'2 m2V2 Pi (45)/ g2i
V gE2A

where P2 denotes the momentum of mass m2 after the strike by mass m x 
and Xs is the static strain of the elastic element caused by the weight 
G2 =  m2 g.

The total pressure force on the stationary base Pc is the sum of the 
static load by the weight G2 and dynamic load Fd

Pc — G2 + Fd (46)
The final form, after some transformations is

„  (i + k)V\ ffl.ffli Pc = G2 + K----- (4 7 )pis m\ + m2

Equation 47 can be expressed depending on the kinetic energy Ekx of 
mass m x at the moment of the collision with mass m2. To this end we 
use the well-known expressions describing the equality of kinetic and 
potential energy Eki = Ep\ and consequently the equation V\ = \]2gh\
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ANALYSIS OF PERCUSSIVE TESTS 443

12. AN ANALYSIS OF THE RESULTS 
OF THEORETICAL STUDIES

From the theoretical studies shown here, it follows that the collision 
process of two bodies can be described by five functions. They are given 
by Equations 25, 28, 34, 37, and 48. All five expressions contain four 
components: Eku mu m2, and k. Those components can be divided into 
three groups depending on the way they were chosen. There are 
well-known, assumed, and calculated components dependent on the 
known and assumed components:
• m2—Both the mass and the material used for the product are known. 

This is the initial component in the determination of all the other 
components.

• k—The coefficient of restitution is known, because the material, the 
construction of the product, and the material used for the falling mass 
mi are defined.

• Eki—Kinetic energy depends on the kind of material and the value of 
mass m2 of the tested product.

• mx—This component can be defined by analysing the constant value 
of the kinetic energy Eki-

Components m2, Eki, and k  are determined univocally. They are 
chosen to realize a concrete purpose and cannot be optionally changed. 
The situation is different when determining mass mi. Component mi can 
be changed on a large scale. There are three reasons for this:
• the equality of kinetic and potential energy Ek\ =  EPu ^mi V\ =  mxghi,
• the velocity V\ =  J2 g h x of mass mi at the moment of collision, 

dependent on the fall height h\,
• the assumed constant value Eki = const dependent on the kind and 

value of mass m2 for the tested product.
From  those reasons it follows that mass mi and velocity Vx can be 

changed optionally. This does not change the value of kinetic energy 
Ek\. However, the expression that follows from the equality of energies 
Eki =  Epi must be fulfilled

mh = m\h\ = m2/i2 = ... = const (49)
Mass mi occurs also as an independent component in all five expres­

sions. It is necessary to study for the tested product, if the change of

D
ow

nl
oa

de
d 

by
 [

18
5.

55
.6

4.
22

6]
 a

t 1
1:

27
 1

9 
M

ar
ch

 2
01

5 



444 R. KORYCKI

mass m, with the constant value of kinetic energy Ek] has an influence 
on the course and value of the energy, forces, and velocities of both 
masses m.\ and m2.

In order to study the influence of the change of mass mx on the 
course of the functions expressed by Equations 25, 28, 34, 37, and 48, 
the derivatives of the five functions in relation to the variable parameter 
m\ are determined.
• The derivative of the velocity V2 for mass m 2 struck by mass m x 

according to Equation 25 is equal to

~  =  V 2£^ (1 +  k) — J ”2 ~  m'-----  =  0 for mx =  m2dm' 2 (m, + m2y
(50)

dV'21 _ 3 m l (m l — 2m 2) — m \i 2 ( ^ 1  — ~ \ 2 Eki ( 1  + k ) ----------==---------------------- < 0  -* maximumdm> 4 + m2y

Function V2 has the maximum for m, =  m2.
dV 2For (0 <  m { <  m2) >  0, V '2 is an increasing function.

^  dVi ,r ° r  -3 — vn\ > m2) < 0 , V2 is a decreasing function.

' The derivative of kinetic energy loss Eh  for the striking mass m, 
according to Equation 28 is

dEfa / f)\ —tyi2—  = (1 -  k 2)Ekl ------------ - 2 < 0 (51)dm x (m x +  m 2)

For all values m x > 0 , Eh  is a decreasing function. When mi grows, 
Eh decreases.
The derivative of kinetic energy Ekl for mass m2 after the strike by 
mass mh according to Equation 34 is

dEk2 n  , ; \ 2 z7  m2(m2 -  m,)
d r ^  ~  ( 1  +  k) E>' > ,  + m if  = 0  for m ' =

( 5 2 )\ , , o n — 2m2(2m2 — m x)
~dmx ~  mi) ~  ( 1  +  k) Ekl — i(mi +  miy  < 0  maximum
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Function Ek 2  has the maximum for mi =  m2.
dEFor —;—- (0 <  mi < m2) >  0, Ek2 is an increasing function.Uf7l\
dEFor -j—  (mi >  m2) <  0, Ek2 is a decreasing function.Clt7l\

• The derivative of kinetic energy E{\ for mass mi after the strike by 
mass m2, according to Equation 37 is

dEL m2(ml -  km2)—— = 2 ( 1  + k)Ekx —------------r— = 0  for m, = km2ami (mi + m2)
(53)

d2Ekl m2[m2(3k + 1) -  2m,]---- 2~ ym\ = km2) = 2(1 + k)Ekx------- ------; ^------- > 0 -» maximum

ANALYSIS OF PERCUSSIVE TESTS 445

dm] (mi + m2)

Function Ek\ has the minimum for mi = km2. 
d E 'For (0 <  mi <  km2) >  0, Ek{ is a decreasing function.
d E 'For (mi >  km2) >  0 , Eki is an increasing function.

The derivative of the total pressure force Pc of mass m2 on the 
stationary base, according to Equation 48 is

dPc ■ /fcr-V/2( 1 +  k) m2 (m2 -  m,)-j-j- =  sJEki - ----- r=----  t - 7 = 7 ------------o  =  0  for =  m 2[h, 2^fm[{mi 4- m2)

(54)
d2Pc /-=-y jl( \  + k) m2 [3mi (m, — 2m2) — m2](mi =  m2) =  W i4 i  —------ ,= ----------- ------ ==------------------— <  0 -> maximumdmV  V 4sjm{ (m, + m2) 3

Function Pc has the maximum for mj = m2.
dPcFor (0 < mi <  m2) >  0, Pc is a decreasing function.
dPcFor ^  (mi >  m2) <  0, Pc is an increasing function.
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446 R. KORYCKI

The realized analysis of the results of theoretical studies has demon­
strated that for all five functions expressed in Equations 25, 28, 34, 37,
and 48, the following are true
1. The variations and values of the determined five functions depend on 

four components: Eku mu m2, and k.
2. The value of the fifth function (Equation 48) depends on Xs—the 

coefficient of compression or elongation of an elastic element that 
transfers an impulse of mass m2 on the base—as well as on Ek\, m u 
m2, and k.

13. CONCLUSIONS
1. The whole process of the percussive test of a product can be 

described by five functions: F2 (the velocity of the struck mass m2 of 
the product), (kinetic energy loss of the striking mass mi during 
the collision with mass m2), Ekl (the kinetic energy of mass m2 after 
the collision with mass mi), E 'ki (the kinetic energy of mass mi after 
the collision with mass m2), and Pc (the total pressure force of the 
struck mass m2 on the stationary base).

2. The parameters determining the values and the courses of the five 
functions are ^ i( th e  kinetic energy of mass m x at the moment of the 
strike by mass m2), m, (the mass of the falling body), m2 (the mass of 
the tested product), and k  (the coefficient of restitution for the 
colliding masses mi and m2). The same parameters and Xs (the 
coefficient of deformation for an elastic element that transfers an 
impulse of mass m2 on the base) have an influence on the value of 
the total pressure force Pc.

3. Three parameters, Eku mh and k, must be listed in the standards 
regulating percussive tests of products, which are also used in the 
construction of testing equipment. This is necessary in order to 
obtain identical results using equipment constructed by different 
producers for testing the same products. There is a group of 
parameters characterising both the falling body (Ekl and m x) and the 
kind of collision (k ). If one of these three parameters changes, it will 
cause a change of the force for the falling mass mi. Thus, it changes 
consequently the value and the distribution of all dynamic forces 
acting during the collision. Two other parameters describing the 
reaction of the tested mass after the strike (m2 and Pc) are not taken
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ANALYSIS OF PERCUSSIVE TESTS 447

into account in the imposed standard. They can give us some 
information concerning the tested product and the test stand and will 
be very useful to analyse the results of the collision.

4. Test results of the same product according to standards DIN 4840:1981 
(Deutsches Institut fur Normung, 1981) and PN-86/Z-08110/08 (Polski 
Komitet Normalizacji, Miar i Jakosci, 1986) cannot be compared with 
the results obtained by using the three other standards listed in Table 1. 
The collision force of the falling mass mi striking the stationary 
product m2 is greater for the conditions described in both the DIN 
and the PN standards. The differences reach 18%. Thus, the dynamic 
strength and dynamic requirements for the tested product are greater 
for those two standards, and the difference reaches 18%, too.

5. In order to compare the same products of the different countries it 
is necessary to determine the standard, the test stand, and the 
parameters of the dynamic test of the certified products. For the 
existing differences of both the used standards and the parameters 
of the test stand, comparison calculations according the theory 
described in this paper can be made.

The analysis of the collision problem should be developed as an 
analysis of the courses of all five parameters and a practical application 
of the discussed parameters characterising the strike (both Eki, mu and 
k, and m2 and Pc) for the real existing test conditions. It should 
determine the courses and the practical influence of all discussed 
parameters on the real strike between the punch and the tested product 
(the helmet) during shock absorption or resistance to the penetration 
test.
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