PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Electronic structure, first and second order physical properties of MPS4: a theoretical study

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We have calculated the electronic structure and physical properties of metal thiophosphate compounds InPS4 and AlPS 4by means of pseudopotential density functional theory (DFT) coupled with the modern theory of polarization. The targeted physical properties are first and second order optical properties as well as elastic, piezoelectric and electro-optic coefficients. Furthermore, population analysis is presented in order to evaluate the covalent-ionic character of the constituent bonds. The calculated elastic constants, refractive indices and second order optical coefficients of InPS4 are in good agreement with experimental values. With the absence of any theoretical or experimental physical properties of AlPS4, we predict that this compound has high piezoelectric coefficients with d14 = − 73.82 pm/V, d25 = − 10.96 pm/V and d36 = 28.19 pm/V.
Wydawca
Rocznik
Strony
275--285
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
  • Laboratoire de Physique des Matériaux, Amar Telidji University of Laghouat, Algeria
autor
  • Laboratoire de Physique des Matériaux, Amar Telidji University of Laghouat, Algeria
autor
  • Département de Physique, Abou Bakr Belkaid University of Tlemcen, Algeria
autor
  • Laboratoire de Physique des Matériaux, Amar Telidji University of Laghouat, Algeria
autor
  • New Technologies - Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen, Czech Republic
  • Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis, Malaysia
Bibliografia
  • [1] Richardson K., Cardinal T., Richardson M., Schulte A., Seal S., Engineering glassy chalcogenide materials for integrated optics applications, in: KOLOBOV A.V. (Ed.), Photo-Induced Metastability in Amorphous Semiconductors, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2003, p. 383.
  • [2] Chung I., Kanatzidis M.G., Chem. Mater., 1 (2014), 849.
  • [3] Vysochanskii Y.M., Slivka V.Y., Chepur D.V., Quantum Electron.+., 20 (1981), 54.
  • [4] Lavrentyeva A., Gabrelian B.V., Nikiforov I.Y., Rehr J.J., Ankudinov A.L., J. Phys. Chem. Solids, 8 (2003), 1251.
  • [5] Nitsche R., Wild P., Mater. Res. Bull., 6 (1970), 419.
  • [6] Carpentier C.D., Diehl R., Nitsche R., Naturwissenschaften, 8 (1970), 393.
  • [7] Bridenbaugh P.M., Mater. Res. Bull., 8 (1973), 1055.
  • [8] Bubenzer A., Nitsche R., Raufer A., J. Cryst. Growth, 3 (1975), 237.
  • [9] Huard F., El Haidouri A., Durand J., Vacher R., Pelous J., Mater. Res. Bull., 4 (1984), 415.
  • [10] Jantz W., Koidl P., Wettling W., Appl. Phys. A-Mater., 2 (1983),109.
  • [11] Bolcatto P.G., Gracia E. A., Sferco S. J., Phys. Rev. B, 24 (1994), 17432.
  • [12] Lavrentyev A.A., Gabrelian B.V., Dubeiko V.A., Nikiforov I.Y., Rehr J.J., J. Phys. Chem. Solids, 12 (2000), 2061.
  • [13] Lavrentyev A.A., Gabrelian B.V., Nikiforov I.Y., Rehr J.J., Ankudinov A.L., J. Phys. Chem. Solids, 12 (2003), 2479.
  • [14] Lavrentyev A.A., Gabrelian B.V., Kulagin B.B., Nikiforov I.Y., Sobolev V.V., J. Phys. Chem. Solids, 1 (2007), 315.
  • [15] Clark S.J., Segall M.D., Pickard C.J., Hasnip P.J., Probert M.I.J., Refson K., Payne M.C., Z. Kristallogr., 5 – 6 (2005), 567.
  • [16] Hammer B., Hansen L.B., Norskov J.K., Phys. Rev. B, 11 (1999), 7413.
  • [17] Vanderbilt D., Phys. Rev. B, 11 (1990), 7892.
  • [18] Gonze X., Beuken J.M., Caracas R., Detraux F., Fuchs M., Rignanese G.M., Sindic L., Verstraete M., Zerah G., Jollet F., Torrent M., Roy A., Mikami M., Ghosez P.H., Raty J.Y., Allan D.C., Comp. Mater. Sci., 25 (2002), 478.
  • [19] Hamann D.R., Wu X., Rabe K.M., Vanderbilt D., Phys. Rev. B, 3 (2005), 035117.
  • [20] Zheng Y. Shi E., Chen J., Zhang T., Song L., J. Phys. Conf. Ser., 1 (2006), 61.
  • [21] Zeng Y., Zheng Y., Xin J., Shi E., Comp. Mater. Sci., 56 (2012), 169.
  • [22] Lagoun B., Bentria T., Bentria B., Comp. Mater. Sci., 68 (2013), 379.
  • [23] Troullier N., Martins J.L., Phys. Rev. B, 3 (1991), 1993.
  • [24] Ceperley D. M., Alder B.J., Phys. Rev. Lett., 7 (1980), 566.
  • [25] Perdew J.P., Wang Y., Phys. Rev. B, 23 (1992), 13244.
  • [26] Perdew J.P., Burke K., Ernzerhaf M., Phys. Rev. Lett., 18 (1996), 3865.
  • [27] Bass M., Handbook of Optics, McGraw-Hill, New York, 1995.
  • [28] Nunes R.W., Venderbilt D., Phys. Rev. Lett., 5 (1994), 712.
  • [29] Resta R., Vanderbilt D., Theory of Polarization: A Modern Approach, in: Rabe K.M., Ahn C.H., Triscone J.M. (Eds.), Physics of Ferroelectrics, Vol. 105, in: Dresselhaus M.S., Lee Y.P., Ossi P.M. (Eds.), Topics in Applied Physics, Springer, Berlin, 2007, p. 31.
  • [30] Vanderbilt D., Resta R., Quantum Electrostatics of Insulators: Polarization, Wannier Functions, and Electric Fields, in: Louie S.G., Cohen M.L. (Eds.), Contemporary Concepts of Condensed Matter Science, Elsevier, Amsterdam, 2006, p. 139.
  • [31] Nunes R.W., Gonze X., Phys. Rev. B, 15 (2001), 155107.
  • [32] Veithen M., Gonze X., Ghosez P., Phys. Rev. B, 12 (2005), 125107.
  • [33] Badlon J.P., Dorlot J.M., Des Materiaux, Polytechnique, Montréal, 2000.
  • [34] Vanderbilt D., Systematic second-order perturbation theory for displacements, strains, and electric fields, Rutgers University, New Brunswick, 2004.
  • [35] Kleinmann D.A., Phys. Rev., 6 (1962), 1977.
  • [36] Zhang G., Tao X., Wang S., Liu G., Shi Q., Jiang M., J. Cryst. Growth, 1, (2011), 717.
  • [37] Langreth D. C., Dion M., Rydberg H., Schroder E., Hyldgaard P., Lundqvist B.I., Int. J. Quantum. Chem., 5 (2005), 599.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6df1709-a5a3-4efe-8593-aacf4a3973d5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.