PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Coexisting of self-excited and hidden attractors in a new 4D hyperchaotic Sprott-S system with a single equilibrium point

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Coexisting self-excited and hidden attractors for the same set of parameters in dissipative dynamical systems are more interesting, important, and difficult compared to other classes of hidden attractors. By utilizing of nonlinear state feedback controller on the popular Sprott-S system to construct a new, unusual 4D system with only one nontrivial equilibrium point and two control parameters. These parameters affect system behavior and transformation from hidden attractors to self-excited attractors or vice versa. As compared to traditional similar kinds of systems with hidden attractors, this system is distinguished considering it has (𝑛-2) positive Lyapunov exponents with maximal Lyapunov exponent. In addition, the coexistence of multi-attractors and chaotic with 2-torus are found in the system through analytical results and experimental simulations which include equilibrium points, stability, phase portraits, and Lyapunov spectrum. Furthermore, the anti-synchronization realization of two identical new systems is done relying on Lyapunov stability theory and nonlinear controllers strategy. lastly, the numerical simulation confirmed the validity of the theoretical results.
Rocznik
Strony
37--56
Opis fizyczny
Bibliogr. 46 poz., rys., tab., wzory
Twórcy
  • Department of Mathematics, College of Computer Science and Mathematics, University of Mosul, Mosul, Iraq
  • Department of Mathematics, College of Computer Science and Mathematics, University of Mosul, Mosul, Iraq
Bibliografia
  • [1] J.H. Park: Chaos synchronization of a chaotic system via nonlinear control. Chaos, Solitons and Fractals, 25 (2005), 579-584. DOI: 10.1016/j.chaos.2004.11.038.
  • [2] U.K. Chen: Global chaos synchronization of new chaotic systems via nonlinear control. Chaos, Solitons and Fractals, 23 (2005), 1245-1251. DOI: 10.1016/j.chaos.2004.06.040.
  • [3] S.F. Al-Azzawi, L.P. Mujiarto, A. Sambas, and W.S.M. Sanjaya: Stability of Lorenz system at the second equilibria point based on Gardano's method. Journal of Physics: Conference Series, 1477(2), (2020), 022009. DOI: 10.1088/1742-6596/1477/2/022009.
  • [4] G.A. Leonov, N.V. Kuznetsov, and V.I. Vagaitsev: Localization of hidden Chia's attractors. Physics Letters A, 375(23), (2011), 2230-2233. DOI: 10.1016/j.physleta.2011.04.037.
  • [5] S.T. Kingni, S. Jafari, H. Simo, and P. Woafo: Three-dimensional chaotic autonomous system with only one stable equilibrium: Analysis, circuit design, parameter estimation, control, synchronization and its fractional-order form. The European Physical Journal Plus, 129(5), (2014), 1-16. DOI: 10.1140/epjp/i2014-14076-4.
  • [6] S. Cang, Y. Li, R. Zhang, and Z. Wang: Hidden and self-excited coexisting attractors in a Lorenz-like system with two equilibrium points. Nonlinear Dynamics, 95(1), (2019), 381-390. DOI: 10.1007/s1 1071-018-4570-x.
  • [7] Q. Deng, C. Wang, and L. Yang: Four-wing hidden attractors with one stable equilibrium point. International Journal of Bifurcation and Chaos, 30(6), (2020), 2050086. DOI: 10.1142/S0218127420500868.
  • [8] V.T. Pham, X. Wang, S. Jafari, C. Voids, and T. Kapitaniak: From Wang Chen system with only one stable equilibrium to a new chaotic system without equilibrium. International Journal of Bifurcation and Chaos, 27(6), (2017), 1750097. DOI: 10.1142/S0218127417500973.
  • [9] C. Li and J.C. Sprott: Coexisting hidden attractors in a 4-D simplified Lorenz system. International Journal of Bifurcation and Chaos, 24(3), (2014), 1450034. DOI: 10.1142/S0218127414500345.
  • [10] S. Zhang, Y. Zeng, Z. Li, M. Wang, X. Zhang, and D. Chang: A novel simple no-equilibrium chaotic system wilh complex hidden dynamics. International Journal of Dynamics and Control, 6(4), (2018), 1465-1476. DOI: 10.1007/s40435-018-0413-3.
  • [11] J.P. Singh and B.K. Roy: Multistability and hidden chaotic attractors in a new simple 4-D chaotic system with chaotic 2-torus behavior. International Journal of Dynamics and Control, 6(2), (2018), 529-538. DOI: 10.1007/s40435-017-0332-8.
  • [12] Z. Wang, S. Cang, H.O. Ochola, and Y. Sun: A hyperchaotic system without equilibrium. Nonlinear Dynamics, 69(1), (2012), 531-537. DOI: 10.1007/s11071-011-0284-z.
  • [13] J.P. Singh and B.K. Roy: Coexistence of asymmetric hidden chaotic attractors in a new simple 4-D chaotic system with curve of equilibria. Optik, 145 (2017), 209-217. DOI: 10.1016/j.ijlco.2017.07.042.
  • [14] L. Gong, R. Wu, and N. Zhou: A new 4D chaotic system with coexisting hidden chaotic attractors. International Journal of Bifurcation and Chaos, 30(10), (2020), 2050142. DOI: 10.1142/S0218127420501424.
  • [15] S. Dadras, H.R Momeni, G. Qi, and Z.L. Wang: Four-wing hyperchaotic attractor generated from a new 4D system with one equilibrium and its fractional-order form. Nonlinear Dynamics, 67(2), (2012), 1161-1173. DOI: 10.1007/s11071-011-0060-0.
  • [16] H. Yu, G. Cai, and Y. Li: Dynamic analysis and control of a new hyperchaotic finance system. Nonlinear Dynamics, 67(3), (2012), 2171 2182. DOI: 10.1007/s11071-011-0137-9.
  • [17] P. Prakash, K. Rajagopal, I. Koyuncu, J.P. Singh, M. Alcin, B.K. Roy, and M. Tuna: A novel simple 4-D hyperchaotic system with a saddlepoint Index-2 equilibrium point and multistability: Design and FPGA-based applications. Circuits, Systems, and Signal Processing, 39(9), (2020), 4259-4280. DOI: 10.1007/s00034-020-01367-0.
  • [18] J .C. Sprott: A proposed standard for the publication of new chaotic systems. International Journal of Bifurcation and Chaos, 21(9), (2011), 2391-2394. DOI: 10.1142/S0218I2741103009X.
  • [19] L. Huang, R. Feng, and Mao Wang: Synchronization of a chaotic system via nonlinear control. Physics Letters A, 320(4) (2004), 271-275. DOI: 10.1016/j.physleta.2003.11.027.
  • [20] S.F. Al-Azzawi, M.A. Mohamed, H. Rubiani, M. Mamat, J. Titaley, and Y.A.R. Langi: Chaotic Lorenz system and it's suppressed. Journal of Advanced Research in Dynamical and Control Systems, 12(2), (2020), 548-555. DOI: 10.5373/JARDCS/V12I2/S20201076.
  • [21] S.F. Al-Azzawi: Stability and bifurcation of pan chaotic system by using Routh-Hurwitz and Gardan methods. Applied Mathematics and Computation, 219(3), (2012), 1144-1152, DOI: 10.1016/j.amc.2012.07.022.
  • [22] K.A. Abed: Controlling of jerk chaotic system via linear feedback control strategies. Indonesian Journal of Electrical Engineering and Computer Science, 20(1), (2020), 370-378. DOI: 10.11591/ijeecs.v20.il.pp370-378.
  • [23] A.A. Ahmad: By using a new iterative method to the generalized system Zakharov-Kuznetsov and estimate the best parameters via applied the PSO algorithm. Indonesian Journal of Electrical Engineering and Computer Science, 19(2), (2020), 1055-1061. DOI: 10.11591 /ijeecs.vl9.i2.pp 1055-1061.
  • [24] K.A. Abed: Solving Kuramoto-Sivashinsky equation by the new iterative method and estimate the optimal parameters by using PSO algorithm. Indonesian Journal of Electrical Engineering and Computer Science, 19(2), (2020), 709-774. DOI: 10.11591/ijeecs.19.i2.pp709-774.
  • [25] M.M. Aziz and S.F. Al-Azzawi: A modification of nonlinear feedback controller. International Journal of Computing Science and Mathematics, 13(1), (2021), 64-79. DOI: 10.1504/IJCSM.2021.114181.
  • [26] S.F. Al-Azzawi and A.S. Al-Obeidi: Chaos synchronization in a new 6D hyperchaotic system with self-excited attractors and seventeen terms. Textit Asian-European Journal of Mathematics, 14(5), (2021), 2150085. DOI: 10.1142/S1793557121500856.
  • [27] Z.N. Al-Kateeb and M. Jader: Encryption and hiding text using DNA coding and hyperchaotic system. Indonesian Journal of Electrical Engineering and Computer Science, 19(2), (2020), 766-774. DOI: 10.11591/ijeecs.v19.i2.pp766-774.
  • [28] Z.N. Al-Kateeb and S.J. Mohammed: Encrypting an audio file based on integer wavelet transform and hand geometry. TELKOMNIKA Telecommunication, Computing, Electronics and Control, 18(4), (2020), 2012-2017. DOI: 10.12928/telkomnika.v18i4.14216.
  • [29] Z.N. Al-Kateeb and S.J. Mohammed: A novel approach for audio file encryption using hand geometry. Multimedia Tools and Applications, 79(27-28), (2020), 19615-19628. DOI: 10.1007/s11042-020-08869-8.
  • [30] Z.N. Al-Kateeb, M.J. Al-Shamdeen, and F.S. Al-Mukhtar: Encryption and steganography a secret data using circle shapes in colored images. Journal of Physics: Conference Series, 1591 (2020), 012019. DOI: 10.1088/1742-6596/1591/1/012019.
  • [31] S.Y. Al-Hayali and S.F. Al-Azzawi: An optimal control for complete synchronization of 4D Rabinovich hyperchaolie systems. TELKOMNIKA Indonesian Journal of Electrical Engineering, 18(2), (2020), 994-1000. DOI: 10.12928/TELKOMNIKA.v 18i2.14301.
  • [32] M. Srivastava, S.R Ansari, S.K. Agrawal, and A.Y.T Lueng: Anti-Synchronization between identical and non-identical fractional-order chaotic systems using active control method. Nonlinear Dynamics, 76(2), (2014), 905-914. DOI: 10.1007/s11071-013-1177-0.
  • [33] F.Q. Dou, J.A. Sun, and W.S. Duan: Anti-synchronization in different hyperchaotic systems. Communications in Theoretical Physics, 50 (2008), 907 912. DOI: 10.1088/0253-6102/50/4/23.
  • [34] K.S. Sudheer and M. Sabir: Hybrid synchronization of hyperchaotic Lü system. Pramana, 73(4), (2009), 781-786. DOI: 10.1007/s12043-009-0145-1.
  • [35] A.S. Al-Obeidi and S.F. Al-Azzawi: Hybrid synchronization of high-dimensional chaos with self-excited attractors. Journal of Interdisciplinary Mathematics, 23(8), (2020), 1569-1584. DOI: 10.1080/09720502.2020.1776941.
  • [36] C. Li and J. Yan: Generalized projective synchronization of chaos: The cascade synchronization approach. Chaos, Solitons & Fractals, 30(1), (2006), 140 146. DOI: 10.1016/j.chaos.2005.08.155.
  • [37] Z.S. Al-Talib and S.F. Al-Azzawi: Projective synchronization for 4D hyperchaotic system based on adaptive nonlinear control strategy. Indonesian Journal of Electrical Engineering and Computer Science, 19(2), (2020), 715-722. DOI: 10.11591/ijeecs.v19.i2.pp715-722.
  • [38] Y-D- Chu, Y-X, Chang, J. Zhang, and X-F. Li: Full state hybrid projective synchronization in hyperchaotic systems. Chaos, Solitons & Fractals, 42(3), (2009), 1502-1510. DOI: 10.1016/j.chaos.2009.03.049.
  • [39] I. Ahmad and M. Shafiq: Robust adaptive anti-synchronization control of multiple uncertain chaotic systems of different orders. Automatika, 61(3), (2020), 396-414. DOI: 10.1080/00051144.2020.1765115.
  • [40] X. Yu, Z. Wang, and G. Wang: Anti-synchronization of a class of chaotic systems with uncertainty and disturbance using the UDE-based control method. In 2020 39th Chinese Control Conference (CCC), (2020), 1762-1766. DOI: 10.23919/CCC50068.2020.9189158.
  • [41] J.C. Sprott: Some simple chaotic llow. Physical Review E, 50(2), (1994), 647. DOI: 10.1103/physreve.50.r647.
  • [42] Q. Yang, W.M. Osman, and C. Chen: A new 6D hyperchaotic system with four positive Lyapunov exponents coined. International Journal of Bifurcation and Chaos, 25(4), (2015), 1550060. DOI: 10.1142/S0218127415500601.
  • [43] G. Hu: Generating hyperchaotic attractors with three positive Lyapunov exponents via state feedback control. International Journal of Bifurcation and Chaos, 19(2), (2009), 651-660. DOI: 10.1142/S0218127409023275.
  • [44] Q. Yang and C. Chen: A 5D hyperchaotic system with three positive Lyapunov exponents coined. International Journal of Bifurcation and Chaos, 23(6), (2013), 1350109. DOI: 10.1142/S0218127413501095.
  • [45] S. Vaidyanathan, Ch. Volos, and V-T. Pham: Hyperchaos, adaptive control and synchronization of a novel 5-D hyperchaotic system with three positive Lyapunov exponents and its SPICE implementation. Archives of Control Sciences, 24(4), (2014), 409-446. DOI: 10.2478acsc-2014-0023.
  • [46] M.A. Al-Hayali and F.S. Al-Azzawi: A 4D hyperchaotic Sprott S system with multistability and hidden attractors. Journal of Physics: Conference Series, 1879(3), (2021), 032031. DOI: 10.1088/1742-6596/1879/3/032031.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6decf5d-9a2e-442b-a793-bbce11a5dacb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.