PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental analysis by measurement of surface roughness variations in turning process of duplex stainless steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of the investigation was to identify surface roughness after turning with wedges of coated sintered carbide. The investigation included predicting the average surface roughness in the dry machining of Duplex Stainless Steel (DSS) and the determination of load curves together with roughness profiles for various cutting conditions. The load curves and roughness profiles for various cutting wedges and variable cutting parameters were compared. It has been shown that dry cutting leads to a decrease in friction for lubricated surfaces, providing a small initial contact area where the surface is contacted. The study has been performed within a production facility during the production of electric motor parts and deep-well pumps.
Rocznik
Strony
759--770
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
  • Opole University of Technology, Faculty of Production Engineering and Logistics, Proszkowska 76, 45-758 Opole, Poland
autor
  • Poznan University of Technology, Faculty of Mechanical Engineering and Management, Piotrowo 3, 60-965 Poznan, Poland
Bibliografia
  • [1] Cogdell, J. D. (2008). A convolved multi-Gaussian probability distribution for surface topography applications. Precision Engineering, 32, 34-46.
  • [2] Wieczorowski, M., Cellary, A., Majchrowski, R. (2010). The analysis of credibility and reproducibility of surface roughness measurement results. Wear, 269, 480-484.
  • [3] Ryu, S. H., Choi, D. K., Chu, C. N. (2006). Roughness and texture generation on end milled surfaces. International Journal of Machine Tools & Manufacture, 46, 404-412.
  • [4] Mahovic Poljacek, S., Risovic, D., Furic, K., Gojo, M. (2008). Comparison of fractal and profilometric methods for surface topography characterization. Applied Surface Science, 254, 3449-3458.
  • [5] Kukiełka, L. (2001). Mathematical modelling and numerical simulation of non-linear deformation of the asperity in the burnishing cold rolling operation. Computational and Experimental Methods, 5, 317-326.
  • [6] Kukiełka, L. (2002). Bases of engineering research. PWN, Warsaw.
  • [7] Benardos, P. G., Vosniakos, G. C. (2003). Predicting surface roughness in machining: a review, International Journal of Machine Tools & Manufacture, 43, 833-844.
  • [8] Wojciechowski, S., Twardowski, P., Wieczorowski, M. (2014). Surface texture analysis after ball end milling with various surface inclination of hardened steel. Metrology and Measurement Systems, 21(1), 145-56.
  • [9] Zawada-Tomkiewicz, A., Sciegienka R. (2011). Monitoring of a micro-smoothing process with the use of machined surface images, Metrology and Measurement Systems, 18(3), 419-428.
  • [10] Twardowski, P., Wojciechowski, S., Wieczorowski, M., Mathia, T.G. (2011). Selected Aspects of High Speed Milling Process Dynamics Affecting Machined Surface Roughness of Hardened Steel. Scanning, 33, 386-395.
  • [11] Krolczyk, G., Raos, P., Legutko, S. (2014). Experimental analysis of surface roughness and surface texture of machined and fused deposition modelled parts. Tehnički Vjesnik - Technical Gazette, 21, 217-221.
  • [12] Koszela, W., Pawlus, P., Rejwer, E., Ochwat, S. (2013). Possibilities of oil pockets creation by the burnishing technique. Archives of Civil and Mechanical Engineering, 13, 465-471.
  • [13] Cabrera, J. M., Mateo, A., Llanes, L., Prado, J. M., Anglada, M. (2003). Hot deformation of duplex stainless steels. Journal of Materials Processing Technology, 143-144, 321-325.
  • [14] Park, Y. H., Lee, Z. H. (2001). The effect of nitrogen and heat treatment on the microstructure and tensile properties of 25Cr-7Ni-1.5Mo-3W-xN duplex stainless steel castings. Materials Science and Engineering: A, 297, 78-84.
  • [15] Bouzid Sai, W., Lebrun, J. L. (2003). Influence of Finishing by Burnishing on Surface Characteristics. Journal of Materials Engineering and Performance, 12(1), 37-40.
  • [16] Braham-Bouchnak, T., Germain, G., Robert, P., Lebrun, J. L. (2010). High pressure water jet assisted machining of duplex steel: machinability and tool life. International Journal of Material Forming, 3, 507- 510.
  • [17] Ran, Q., Li, J., Xu, Y., Xiao, X., Yu, H., Jiang, L. (2013). Novel Cu-bearing economical 21Cr duplex stainless steels. Materials and Design, 46, 758-765.
  • [18] Nomani, J., Pramanik, A., Hilditch, T., Littlefair, G. (2013). Machinability study of first generation duplex (2205), second generation duplex (2507) and austenite stainless steel during drilling process. Wear, 304, 20-28.
  • [19] Krolczyk, G., Gajek, M., Legutko, S. (2013). Predicting the tool life in the dry machining of duplex stainless steel. Eksploatacja i Niezawodnosc - Maintenance and Reliability, 15(1), 62-65.
  • [20] Krolczyk, G., Legutko, S., Gajek, M. (2013). Predicting the surface roughness in the dry machining of duplex stainless steel (DSS). Metalurgija, 52(2), 259-262.
  • [21] Krolczyk, G., Gajek, M., Legutko, S. (2013). Effect of the cutting parameters impact on tool life in duplex stainless steel turning process. Tehnički Vjesnik - Technical Gazette, 20(4), 587-592.
  • [22] Krolczyk, G., Legutko, S., Raos, P. (2013). Cutting wedge wear examination during turning of duplex stainless steel, Tehnički Vjesnik - Technical Gazette, 20(3), 413-418.
  • [23] Krolczyk, G., Legutko, S., Stoic, A. (2013). Influence of cutting parameters and conditions onto surface hardness of duplex stainless steel after turning process. Tehnički Vjesnik - Technical Gazette, 20(6), 1077-1080.
  • [24] Krolczyk, G., Nieslony, P., Legutko, S., Stoic, A. (2014). Microhardness changes gradient of the Duplex Stainless Steel ( DSS ) surface layer after dry turning. Metalurgija, 53, 529-532.
  • [25] Selvaraj, D. P., Chandramohan, P., Mohanraj, M. (2014). Optimization of surface roughness, cutting force and tool wear of nitrogen alloyed duplex stainless steel in a dry turning process using Taguchi method. Measurement, 49, 205-215.
  • [26] Krolczyk, G., Nieslony, P., Legutko, S. (2014). Microhardness of Surface Integrity in turning process of duplex stainless steel (DSS) for different cutting conditions. Journal of Materials Engineering and Performance, 23(3), 859-866.
  • [27] Oliveira, C. A., Diniz, A. E., Bertazzoli, R. Correlating tool wear, surface roughness and corrosion resistance in the turning process of super duplex stainless steel. Journal of the Brazilian Society of Mechanical Sciences and Engineering, DOI 10.1007/s40430-013-0119-6.
  • [28] Rech, J., Moisan, A. (2003). Surface integrity in finish hard turning of case-hardened steels. International Journal of Machine Tools & Manufacture, 43(5), 543-550.
  • [29] Pawlus, P., Grabon, W. (2008). The method of truncation parameters measurement from material ratio curve. Precision Engineering, 32, 342-347.
  • [30] Montgomery, D. (2003). Design and Analysis of Experiments. 5th Edition, New York: John Wiley & Sons.
  • [31] Nielsen, H. S. (1988). New approaches to surface roughness evaluation of special surfaces. Precision Engineering, 10(4), 209-213.
  • [32] Sedlacek, M., Podgornik, B., Vizintin, J. (2009). Influence of surface preparation on roughness parameters, friction and wear. Wear, 266, 482-487.
  • [33] Kishawy, H. A., Elbestawi, M. A. (1999). Effects of process parameters on material side flow during hard turning. International Journal of Machine Tools & Manufacture, 39(7), 1017-1030.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6dd15c1-52d1-4f49-941a-29cb0f2033d3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.