PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Activity of phthalocyanine-sensitized TiO2-anatase in photooxidation of sulfite ions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hybrid catalysts based on the TiO2 matrix impregnated with Nd, Eu and Yb diphthalocyanines proved effective in oxidation of sulfite ions under irradiation with light from the UV-visible range. Micro- and nano-crystalline anatase powders were used in preparation of the photocatalysts, which were applied in the form of a suspension in the water phase. The reaction yield was found to depend on the phthalocyanine sensitizer used and the conditions of TiO2 impregnation. The best results were obtained when micro-anatase impregnated with Yb-diphthalocyanine was used
Rocznik
Strony
64--69
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wz.
Twórcy
autor
  • Opole University, Faculty of Chemistry, ul. Oleska 48, 45-095 Opole
  • Opole University, Faculty of Chemistry, ul. Oleska 48, 45-095 Opole
autor
  • Opole University, Faculty of Chemistry, ul. Oleska 48, 45-095 Opole
autor
  • Opole University, Faculty of Chemistry, ul. Oleska 48, 45-095 Opole
autor
  • Opole University, Faculty of Chemistry, ul. Oleska 48, 45-095 Opole
Bibliografia
  • 1. Vadivel Murugan, A., Samuel, V. & Ravi, V. (2006). Synthesis of nanocrystalline anatase TiO2 by microwave hydrothermal method. Mater. Lett. 60, 479-480. DOI: 10.1016/j. matlet.2005.09.017.
  • 2. Figgemeier, E., Kylberg, W. & Constable, E. (2007). Titanium dioxide nanoparticles prepared by laser pyrolysis: synthesis and photocatalytic properties. Appl. Surf. Sci. 254, 1037-1041. DOI: 10.1016/j.apsusc.2007.08.036.
  • 3. Su, C., Hong, B.Y. & Tseng, C.M. (2004). Sol-gel preparation and photocatalysis of titanium dioxide. Catal. Today 96, 119-126. DOI: 10.1016/j.cattod.2004.06.132.
  • 4. Li, Y., White, T.J. & Lim, S.H. (2004). Low-temperature synthesis and microstructural control of titania nano-particles. J. Solid State Chem. 177, 1372-1381. DOI: 10.1016/j. jssc.2003.11.016.
  • 5. Billik, P. & Plesch, G. (2007). Mechanochemical synthesis of anatase and rutil nanopowders from TiOSO4. Mater. Lett. 61, 1183-1186. DOI: 10.1016/j.matlet.2006.06.080.
  • 6. Ying, L., Hon, L.S., White, T., Withers, R. & Hai, L.B. (2003). Controlled Nanophase Development in Photocatalytic Titania. Mater. Trans. 44 (7), 1328-1332. DOI: 10.2320/ matertrans.44.1328.
  • 7. Qamar, M., Yoon, C.R., Park, K., Kim, D.H., Lee, K.S., Lee, W.J. & Kim, S.J. (2008). Preparation and photocatalytic activity of nanotubes obtained from titanium dioxide. Catal. Today 131, 3-14. DOI: 10.1016/j.cattod.2007.10.015.
  • 8. Al-Salim, N.I., Bagshaw, S.A., Bittar, A., Kemmit, T., McQuillan, A.J., Mills, A.M. & Ryan, M.J. (2000). Characterization and activity of sol-gel-prepared TiO2 photocatalysts modifi ed with Ca, Sr or Ba ion additives. J. Mater. Chem. 10, 2358-2363. DOI: 10.1039/B004384M.
  • 9. Ito, S., Inoue, S., Kawada, H., Hara, M., Iwasaki, M. & Tada, H. (1999). Low-Temperature Synthesis of Nanometer- Sized Crystalline TiO2 Particles and Their Photoinduced Decomposition of Formic Acid. J. Colloid Interface Sci. 216, 59-64. DOI: 10.1006/jcis.1999.6275.
  • 10. Colmenares, J.C., Aramend, M.A., Marinas, A. & Urbano, F.J. (2006). Synthesis, characterization and photocatalytic activity of different metal-doped titania systems. Appl. Catal. A: Gen. 306, 120-127. DOI: 10.1016/j.apcata.2006.03.046.
  • 11. Mele, G., del Sole, R., Vasapollo, G., Garcia-Lopez, E., Palmisano, L., Jun, L., Słota, R. & Dyrda, G. (2007). TiO2-based photocatalysts impregnated with metallo-porphyrins employed for degradation of 4-nitrophenol in aqueous solutions: Role of metal and macrocycle. Res. Chem. Intermed. 33, 443-448. DOI: 10.1163/156856707779238649.
  • 12. Mele, G., Garcia-Lopez, E., Palmisano, L., Dyrda, G. & Słota, R. (2007). Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO2 impregnated with lanthanide double-decker phthalocyanine complexes. J. Phys. Chem. C 111, 6581-6588. DOI: 10.1021/jp070529j.
  • 13. Zhao, X., Li, Z., Chen, Y., Shi, L. & Zhu, Y. (2008). Enhancement of photocatalytic degradation of polyethylene plastic with CuPc modifi ed TiO2 photocatalyst under solar light irradiation. Appl. Surf. Sci. 254, 1825-1829. DOI: 10.1016/j. apsusc.2007.07.154.
  • 14. Fa, W. & Zan, L. (2008). Solid-phase photocatalytic degradation of polystyrene with TiO2 modifi ed by iron (II) phthalocyanine. Appl. Catal. B: Environ. 79, 216-223. DOI: 10.1016/j.apcatb.2007.10.018.
  • 15. Mele, G., del Sole, R., Vasapollo, G., Garcia-Lopez, E., Palmisano, L. & Schiavello, M. (2003). Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO2 impregnated with functionalized Cu(II)- porphyrin or Cu(II)-phthalocyanine. J. Catal. 217, 334-342. DOI: 10.1016/S0021-9517(03)00040-X.
  • 16. Zuo, P. & Li, C. (2006). Mechanism of squarylium cyanine and Ru(dcbpy)2(NCS)2 co-sensitization of colloidal TiO2. J. Photoch. Photobio. A: Chem. 183, 138-145. DOI: 10.1016/j. jphotochem.2006.03.007.
  • 17. Słota, R., Dyrda, G., Galbas, M. & Mele, G. (2014). Hybrid photocatalysts with a TiO2 matrix sensitized with lanthanide phthalocyanines. Chemik 68 (4), 385-390.
  • 18. Marcì, G., García-López, E., Mele, G., Palmisano, L., Dyrda, G. & Słota, R. (2009) Comparison of the photocatalytic degradation of 2-propanol in gas-solid and liquid-solid systems by using TiO2 - LnPc2 hybrid powders. Catal. Today 143, 203-210. DOI: 10.1016/j.cattod.2008.12.029.
  • 19. Wang, C., Li, J., Mele, G., Yang, G.M., Zhang, F.X., Palmisano, L. & Vasapollo, G. (2007). Effi cient degradation of 4-nitrophenol by using functionalized porphyrin-TiO2 photocatalysts under visible irradiation. Appl. Catal. B-Environ. 76, 218-226. DOI: 10.1016/j.apcatb.2007.05.028.
  • 20. Duan, M.V., Li, J., Mele, G., Wang, C., Lu, X.F., Vasapollo, G. & Zhang, F.X. (2010). Photocatalytic Activity of Novel Tin Porphyrin/TiO2 Based Composites. J. Phys. Chem. C. 114, 7857-7862. DOI: 10.1021/jp911744a.
  • 21. Wetchakun, N. & Phanichphant, S. (2008). Effect of temperature on the degree of anatase-rutile transformation in titanium dioxide nanoparticles synthesized by the modifi ed sol-gel method. Curr. Appl. Phys. 8, 343-346. DOI: 10.1016/j. cap.2007.10.028.
  • 22. Park, S.D., Cho, Y.H., Kim, W.W. & Kim, S. (1999). Understanding of Homogeneous Spontaneous Precipitation for Monodispersed TiO2 Ultrafi ne Powders with Rutile Phase around Room Temperature. J. Solid State Chem. 146, 230-236. DOI: 10.1006/jssc.1999.8342.
  • 23. Wang, X.H., Li, J.G. & Kamiyama, H. (2006). Fe-doped TiO2 nanopowders by oxidative pyrolysis of organometallic precursors in induction thermal plasma: synthesis and structural characterization. Thin Solid Films 506/507, 278-282. DOI: 10.1016/j.tsf.2005.08.069.
  • 24. Mishra, P.R. & Srivastava, O.N. (2008 June). On the synthesis, characterization and photocatalytic applications of nanostructured TiO2. Bull. Mater. Sci. 31 (3), 545-550. DOI: 10.1007/s12034-008-0085-2.
  • 25. Mele, G., Ciccarella, G., Vasapollo, G., García-López, E., Palmisano, L. & Schiavello, M. (2002). Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO2 samples impregnated with Cu(II)- phthalocyanine. Appl. Catal. B. 38, 309-319. DOI: 10.1016/ S0926-3373(02)00060-7.
  • 26. Słota, R., Dyrda, G., Szczegot, K., Mele, G. & Pio, I. (2011). Photocatalytic activity of nano and microcrystalline TiO2 hybrid systems involving phthalocyanine or porphyrin sensitizers. Photochem. Photobiol. Sci. 10, 361-366. DOI: 10.1039/c0pp00160k.
  • 27. Iliev, V. & Ilieva, A. (1995). Oxidation and photooxidation of sulfur-containing compounds in the presence of water soluble phthalocyanine complexes. J. Mol. Cat. A 103, 147-153. DOI: 10.1016/1381-1169(95)00139-5.
  • 28. Słota, R., Dyrda, G. & Szczegot, K. (2008). Sulfur dioxide oxidation catalyzed by photosensitized ytterbium diphthalocyanine. Catal. Lett. 126, 247-252. DOI: 10.1007/s10562-008-9609-z.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6dc255b-995b-4bce-a6dd-ad0c634ca002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.