PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Leg's Tip-Ground Contact Detection Based on Drive Currents in a Real Walking Robot

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To ensure an effective walking over uneven terrain for multilegged walking robots, there is necessary to detect the contact between the leg’s tips and the ground. It is essential to determine the moment when we should end the swing phase of the leg. This paper presents a method of detecting contact with the ground based on total current drawn by the servomotors of each robot’s legs. The method was developed using a 4-legs supported gait on 5-legged walking robot – PentOpiliones. This detection method has been tested and positively verified on a real robot. Also there has been tested the limitation of above method using a gait with different robot postures and different speeds.
Twórcy
autor
  • Poznan University of Technology, Institute of Control and Information Engineering, ul. Piotrowo 3A, 60-965 Poznań, www: http://www.cie.put.poznan.pl/
Bibliografia
  • [1] D. Belter, K. Walas, Strategia adaptacyjnego ruchu robota kroczącego po nierównym terenie (Robot motion adaptive strategy of walking on uneven ground), Warsaw Univ. of Tech. Pub. House, Problemy robotyki, ed. K. Tchon, C. Zielinski, Warsaw 2010, 625–634. (in Polish)
  • [2] A. Besari, R. Zamri, A. Prabuwono, S. Kuswadi, “The Study on Optimal Gait for Five-Legged Robot with Reinforcement Learning”. In: Proc. Int. Conf. on Intelligent Robotics and Applications ICIRA, 2009, 1170–1175, DOI: 10.1007/978-3-642-10817-4_114.
  • [3] X. Duan, W. Chen, S. Yu, J. Liu, “Tripod Gaits Planning and Kinematics Analysis of a Hexapod Robot”. In: Proceedings of the IEEE International Conference on Robotics & Automation, New Zealand, December 2009, 1851–1855, DOI:10.1109/ICCA.2009.5410582.
  • [4] K. Inoue, T. Tsurutani, T. Takubo, T. Arai, “Omni- directional Gait of Limb Mechanism Robot Hanging from Grid-like Structure”. In: Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems,October 2006, 1733–1737. DOI: 10.1109/IROS.2006.282133.
  • [5] G.-S. Kim, H. J. Shin, J. Yoon, “Development of 6-axis Force/Moment Sensor for Humanoid Robot’s Foot”, IEEE Sensors, October, 2007, 217–220, DOI: 10.1109/ICSENS.2007.4388375.
  • [6] A. Mohiuddin, M. R. Khan, B. Masum, F. Soheli, “Walking Hexapod Robot in Disaster Recovery: Developing Algorithm for Terrain Negotiation and Navigation”, New Advanced Technologies, Aleksandar Lazinica (Ed.), ISBN: 978-953-307-067-4, InTech, 2010. DOI: 10.5772/9437.
  • [7] STMicroelectronics, STM32F405xx STM-32F407xx, Doc ID 022152 Rev 3, http://www.st.com/. 2012.
  • [8] Texas Instruments, INA138, INA168, High-Side Measurement CURRENT SHUNT MONITOR, http://www.ti.com/, 2005.
  • [9] M. Wąsik, “Projekt i wykonanie pięcionożnego robota kroczącego” (Design and execution of 5-legged walking robot). In: Innowacyjne rozwiązania w obszarze automatyki, robotyki i pomiarów (Innovative solutions in the field of automation, robotics and measurement), Series: PIAP Monographies, Warsaw, 2013. (in Polish)
  • [10] M. Wąsik, M. Wasielica, P. Skrzypczynski, “Unconventional 5-legged robot for agile locomotion”. In: Nature-Inspired Mobile Robots. Proceedings of the 16th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, 2013, 335–342, DOI: 10.1142/9789814525534_0043.
  • [11] T. Zielinska, Maszyny kroczące: podstawy, projektowanie, sterowanie i wzorce biologiczne (Walking nachines: fundamentals, design, control and biological patterns), Warsaw, PWN 2003. (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6d67eca-b9ac-4f7a-a7d5-c89c1cb93ee8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.