PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Composite Propellant Formulation of Poly (16-, 32- and 64-) Azido Dendritic Esters as Energetic Plasticizer and Evaluation of Properties

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
16-, 32- and 64-Polyazido hyperbranched dendrimers were synthesized from hydroxy terminated dendritic ester by following two steps namely, tosylation and azidation. The poly azido dendrimers were incorporated in composite propellant formulations as an energetic plasticizer. The physical, thermal sensitivity and ballistic properties of these composite propellants such as burning rate, Cal-val, density, ignition/decomposition temperature (AET), DSC-TGA, mechanical properties, impact and friction sensitivity were evaluated experimentally while the specific impulse (Isp) and characteristic velocity (C*) were obtained theoretically. A significant enhancement in heat release was noted in the propellant formulation having 16-azido dendritic ester as an energetic plasticizer compared to 32- and 64-azido dendritic esters and a reference composition.
Rocznik
Strony
506--522
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Organic Synthesis Laboratory, Department of Applied Chemistry, Defence Institute of Advanced Technology (DU), Girinagar, Pune-411025, India.
  • Department of Chemistry, School of Science, Gitam University, Hyderabad, India
autor
  • Organic Synthesis Laboratory, Department of Applied Chemistry, Defence Institute of Advanced Technology (DU), Girinagar, Pune-411025, India.
autor
  • Solid Rocket Propellant Division, High Energy Materials Research Laboratory, Pune-41102, India
  • Organic Synthesis Laboratory, Department of Applied Chemistry, Defence Institute of Advanced Technology (DU), Girinagar, Pune-411025, India.
  • Organic Synthesis Laboratory, Department of Applied Chemistry, Defence Institute of Advanced Technology (DU), Girinagar, Pune-411025, India.
Bibliografia
  • [1] Sutton, G.P.; Biblarz, O. Rocket Propulsion Elements. Wiley & Sons, Inc, 1966; ISBN 0-471-52938-9, 1992.
  • [2] Krishnan, S.; Chakravarthy, S.R.; Athithan, S.K. Propellant and Explosives Technology, IIT-M Course Notes. Allied Publishers Limited, Chennai, 1998.
  • [3] Kumari, D.; Balakshe, R.; Banerjee, S.; Singh, H. Energetic Plasticizers for Gun and Rocket Propellants. Rev. J. Chem. 2012, 2: 240-262.
  • [4] Akhavan, J. The Chemistry of Explosives. 2nd ed., SC, UK, 2004; ISBN 978-0-85404-640-9.
  • [5] Kumari, D.; Singh, H.; Patil, M.; Thiel, W.; Pant, C.S.; Banerjee, S. Synthesis, Characterization, Thermal and Computational Studies of Novel tetra-Azido Esters as Energetic Plasticizers. Thermochim. Acta 2013, 562: 96-104.
  • [6] Gaur, B.; Loch, B.; Choudhary, V.; Varma, I.K. Azido Polymers-Energetic Binders for Solid Rocket Propellants. J. Macromol. Sci. Chem., Part C: Polym. Rev. 2003, 43: 505-545.
  • [7] Kumari, D.; Anjitha, S.G.; Pant, C.S.; Patil, M.; Singh, H.; Banerjee, S. Synthetic Approach to Novel Azido Esters and Their Utility as Energetic Plasticizers. RSC Adv. 2014, 4(75): 39924-39933
  • [8] Rao, K.P.C.; Sikder, A.K.; Kulkarni, M.A.; Bhalerao, M.M.; Gandhe, B.R. Studies on n-Butyl Nitroxyethylnitramine (n-BuNENA): Synthesis, Characterization and Propellant Evaluations. Propellants Explos. Pyrotech. 2004, 29: 93-98.
  • [9] Kumar, S.; Kumar, A.; Yamajala, K.D.B.; Gaur, P.; Kumar, D.; Banerjee, S. Design and Evaluation of the Thermal Properties of Di-, Tri-and Tetra-Azido-Esters. Cent. Eur. J. Ener. Mater. 2017, 14(4): 844-860.
  • [10] Zohari, N.; Sheibani, N.; Chavoshi, H.Z. Investigation of the Most Effective Molecular Descriptors on the Thermal Behaviour of Energetic Azido-ester Plasticizers through QSPR Approach. J. Therm. Anal. Calorim. 2018, 131(3):3157-3167.
  • [11] Drees, D.; Löffel, D.; Messmer, A.; Schmid, K. Synthesis and Characterization of Azido Plasticizer. Propellants Explos. Pyrotech. 1999, 24(3): 159-162.
  • [12] Reese, D.A.; Son, S.F.; Groven, L.J. Composite Propellant Based on a New Nitrate Ester. Propellants Explos. Pyrotech. 2014, 39(5): 684-688.
  • [13] Tang, Y.; Dharavath, S.; Imler, G.H.; Parrish, D.A.; Shreeve, J.M. Nitraminoand Dinitromethyl‐substituted 1,2,4‐Triazole Derivatives as High‐performance Energetic Materials. Chem. Eur. J. 2017, 239185-239191.
  • [14] Bohn, M.A. Determination of the Kinetic Data of the Thermal Decomposition of Energetic Plasticizers and Binders by Adiabatic Self Heating. Thermochim. Acta 1999, 337: 121-139.
  • [15] Ghosh, K.; Pant, C.S.; Sanghavi, R.; Adhav, S.; Singh, A. Studies on Triple Base Gun Propellant Based on Two Energetic Azido Esters. J. Energ. Mater. 2009, 27(1):40-50.
  • [16] Pant, C.S.; Wagh, R.M.; Nair, J.K.; Gore, G.M.; Thekkekara, M.; Venugopalan, S. Synthesis and Characterization of First Generation Dendritic Azido Esters. Propellants Explos. Pyrotech. 2007, 32(6): 461-467.
  • [17] Gaur, P.; Dev, S.; Kumar, S.; Kumar, M.; Vargeese, A.A.; Soni, P.; Siril, P.F.; Ghosh, S. Dendritic Polynitrato Energetic Motifs: Development and Exploration of Physicochemical Behavior through Theoretical and Experimental Approach. ACS Omega 2017, 2(11): 8227-8233.
  • [18] Stiriba, S.E.; Kautz, H.; Frey, H. Hyperbranched Molecular Nanocapsules:Comparison of the Hyperbranched Architecture with the Perfect Linear Analogue. J. Am. Chem. Soc. 2002, 124: 9698-9699.
  • [19] Gao, C.; Yan, D. Hyperbranched Polymers: from Synthesis to Applications. Prog. Polym. Sci. 2004, 29(3): 183-275.
  • [20] Cheng, H.; Yuan, X.; Sun, X.; Li, K.; Zhou, Y.; Yan, D. Effect of Degree of Branching on the Self-assembly of Amphiphilic Hyperbranched Multiarm Copolymers. Macromol. 2009, 43(2): 1143-1147.
  • [21] Yamajala, K.D.B.; Banerjee, S. Design of 2nd, 3rd and 4th Generations of Azido and 1,2,3‐Triazole Dendritic Esters and Their Energetic and Biological Applications. Chemistry Select 2017, 2(10): 3152-3157.
  • [22] Fordham, S. High Explosives and Propellants. Pergamon, Oxford, UK, 1966.
  • [23] Avrami, L.; Hutchinson, R. The Sensitivity to Impact and Friction, in Energetic Materials. 2: Technology of the Inorganic Azides. Plenum press, New York, 1977, pp. 111-162.
  • [24] Gupta, G.; Jawale, L.; Mehilal, D.; Bhattacharya, B. Various Methods for the Determination of the Burning Rates of Solid Propellants: an Overview. Cent. Eur. J. Energ. Mater. 2015, 12(3): 593-620.
  • [25] Encyclopedia of Explosives and Related Items. 1st ed., Vol 1, (Fedoroff, B.T.; Sheffield, O.E., Eds.), Picatinny Arsenal, Dover, NJ, 1960, p. 16.
  • [26] ASTM D638-08 Standard Test Method for Tensile Properties of Plastics. ASTM International, West Conshohocken, USA, 2008.
  • [27] Crawford, B.L.; Clayton, H.; Farrington, D.; Wilfong, R.E. Direct Determination of Burning Rates of Propellant Powders. Anal. Chem. 1947, 19(9): 630-633.
  • [28] Varghese, T.L.; Krishnamurthy, V.N. The Chemistry and Technology of Solid Rocket Propellants (A Treatise on Solid Propellants). Allied Publishers PVT. LTD., 2017; ISBN 978-93-85926-33-4.
  • [29] Chaturvedi, S.; Dave, P.N. Nano-metal Oxide: Potential Catalyst on Thermal Decomposition of Ammonium Perchlorate. J. Exp. Nanosci. 2012, 7(2): 205-231.
  • [30] Venugopalan, S. Demystifying Explosives: Concepts in High Energy Materials. Elsevier, Amsterdam, 2015; ISBN 978-0128015766.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6cb9a06-8b99-4511-aa5e-ed86f7067850
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.