Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
The issue of modeling the security of information exchange in intelligent transportation systems
Języki publikacji
Abstrakty
Zagadnienie modelowania bezpieczeństwa wymiany informacji w inteligentnych środkach transportu The issue of modeling the security of information exchange in intelligent transportation systems Artykuł stanowi merytoryczne wprowadzenie do tematyki wyzwań związanych z cyberbezpieczeństwem w kontekście inteligentnych środków transportu. Zadaniem tego działania jest zidentyfikowanie kluczowych trudności i potrzeb w zakresie bezpiecznej wymiany informacji w takich systemach. Praca skupia się na analizie różnych technologii komunikacyjnych, jak również na przeglądzie obecnych standardów i technik wykrywania zagrożeń. Przedstawiono również modele potencjalnych zagrożeń oraz możliwe mechanizmy zabezpieczeń, które mogą znaleźć zastosowanie w przyszłych pracach badawczych. Na podstawie wyników badań podkreślono konieczność dalszego rozwoju i badania modeli bezpieczeństwa, co będzie przedmiotem kolejnych prac, w tym konkretnych implementacji i testowania ich efektywności.
The article provides a substantive introduction to the issue of challenges of cyber-security in the context of intelligent transportation modes. The task of this study is to identify the key difficulties and needs for the secure exchange of information in such systems. This work focuses on an analysis of various communication technologies, as well as a review of current standards and threat detection techniques. It also presents models of potential threats and possible security mechanisms that can be applied in future research work. Based on the results of this research, the need for further development and study of security models is emphasized, which will be the subject of future work, including specific implementations and testing of their effectiveness.
Czasopismo
Rocznik
Tom
Strony
157--170
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
autor
- Warsaw University of Technology (Politechnika Warszawska), Poland
Bibliografia
- 1. Reuters, “Waymo partners with Magna for new vehicle factory in Arizona” 2025. [Online]. Available: https://www.reuters.com. [Accessed: May. 10, 2025].
- 2. Electric Vehicles Research, “China Set to Lead the World in V2X-Connected Vehicle Technology Uptake” 2024. [Online]. Available: https://www.electricvehicle sresearch.com. [Accessed: May. 10, 2025].
- 3. Z. Ye i in., „IoT-enhanced smart road infrastructure systems for comprehensive real-time monitoring”, Internet of Things and Cyber-Physical Systems, t. 4, s. 235–249, 2024, doi: 10.1016/j.iotcps.2024.01.002.
- 4. S. Dasgupta, A. Ahmed, M. Rahman, and T.N. Bandi, „Unveiling the Stealthy Threat: Analyzing Slow Drift GPS Spoofing Attacks for Autonomous Vehicles in Urban Environments and Enabling the Resilience”, 2024, arXiv. DOI: 10.48550/ARXIV.2401.01394.
- 5. F. Wang, X. Wang, and X. (Jeff) Ban, „Data poisoning attacks in intelligent transportation systems: A survey”, Transportation Research Part C: Emerging Technologies, t. 165, s. 104750, 2024, DOI: 10.1016/j.trc.2024.104750.
- 6. F. Ahmad, A. Adnane, V. Franqueira, F. Kurugollu, and L. Liu, „Man-In-The-Middle Attacks in Vehicular Ad-Hoc Networks: Evaluating the Impact of Attackers’ Strategies”, Sensors, t. 18, nr 11, s. 4040, 2018, DOI: 10.3390/s18114040.
- 7. P. Das, Md. R.A. Asif, S. Jahan, K. Ahmed, F.M. Bui, and R. Khondoker, „STRIDE-Based Cybersecurity Threat Modeling, Risk Assessment and Treatment of an In-Vehicle Infotainment System”, Vehicles, t. 6, nr 3, s. 1140–1163, 2024, DOI: 10.3390/vehicles6030054.
- 8. R.P. Jover and V. Marojevic, „Security and Protocol Exploit Analysis of the 5G Specifications”, 2018, arXiv. DOI: 10.48550/ARXIV.1809.06925.
- 9. R.S. Rathore, C. Hewage, O. Kaiwartya, and J. Lloret, „In-Vehicle Communication Cyber Security: Challenges and Solutions”, Sensors, t. 22, nr 17, s. 6679, 2022, DOI: 10.3390/s22176679.
- 10. R.-H. Hsu, J. Lee, T. Q.S. Quek, and J.-C. Chen, „Reconfigurable Security: Edge Computing-based Framework for IoT”, 2017, arXiv. DOI: 10.48550/ARXIV.1709.06223.
- 11. International standard ISO/IEC, “Information security, cybersecurity and privacy protection – Information security management systems – Requirements” 2022. [Online]. Available: https://www.iso.org/standard/27001 [Accessed: May 11, 2025].
- 12. International standard ISO/SAE, “Road vehicles – Cybersecurity engineering” 2022. [Online]. Available: https://www.iso.org/standard/70918.html [Accessed: May 11, 2025].
- 13. Standards Association IEEE SA, “IEEE Standard for Information technology - Telecommunications and information exchange between systems Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications” 2022. [Online]. Available: https://standards.ieee.org/ieee/802.11/5536 [Accessed: May 11, 2025].
- 14. Z. Lu, G. Qu, and Z. Liu, „A Survey on Recent Advances in Vehicular Network Security, Trust, and Privacy”, IEEE Trans. Intell. Transport. Syst., t. 20, nr 2, s. 760-776, 2019, DOI: 10.1109/tits.2018.2818888.
- 15. J.M. Qurashi, K. Jambi, F. Alsolami, F.E. Eassa, M. Khemakhem, and A. Basuhail, „Resilient Countermeasures Against Cyber-Attacks on Self-Driving Car Architecture”, IEEE Trans. Intell. Transport. Syst., t. 24, nr 11, s. 11514–11543, 2023, DOI: 10.1109/tits.2023.3288192.
- 16. G. Peng, K. Wang, H. Zhao, and H. Tan, „Integrating cyber-attacks on the continuous delay effect in coupled map car-following model under connected vehicles environment”, Nonlinear Dyn, t. 111, nr 14, s. 13089–13110, 2023, DOI: 10.1007/s11071-023-08508-5.
- 17. M. Arif, G. Wang, M. Zakirul Alam Bhuiyan, T. Wang, and J. Chen, „A survey on security attacks in VANETs: Communication, applications and challenges”, Vehicular Communications, t. 19, s. 100179, 2019, DOI: 10.1016/j.vehcom.2019.100179.
- 18. B. Bala and S. Behal, „AI techniques for IoT-based DDoS attack detection: Taxonomies, comprehensive review and research challenges”, Computer Science Review, t. 52, s. 100631, 2024, DOI: 10.1016/j.cosrev.2024.100631.
- 19. F. De Keersmaeker, Y. Cao, G. K. Ndonda, i R. Sadre, „A Survey of Public IoT Datasets for Network Security Research”, IEEE Commun. Surv. Tutorials, t. 25, nr 3, s. 1808–1840, 2023, DOI: 10.1109/comst.2023.3288942.
- 20. P. P. Ray, „A survey on Internet of Things architectures”, Journal of King Saud University - Computer and Information Sciences, t. 30, nr 3, s. 291–319, 2018, DOI: 10.1016/j.jksuci.2016.10.003.
- 21. J. Zhang, M. Ma, P. Wang, i X. Sun, „Middleware for the Internet of Things: A survey on requirements, enabling technologies, and solutions”, Journal of Systems Architecture, t. 117, s. 102098, 2021, DOI: 10.1016/j.sysarc.2021.102098.
- 22. P. Goyal, A. K. Sahoo, T. K. Sharma, P. K. Singh, „Internet of Things: Applications, security and privacy: A survey”, Materials Today: Proceedings, t. 34, s. 752–759, 2021, DOI: 10.1016/j.matpr.2020.04.737.
- 23. V. Busi Reddy, S. Venkataraman, and A. Negi, „Communication and Data Trust for Wireless Sensor Networks Using D–S Theory”, IEEE Sensors J., t. 17, nr 12, s. 3921-3929, 2017, DOI: 10.1109/jsen.2017.2699561.
- 24. G. Perrone, M. Vecchio, R. Pecori, and R. Giaffreda, „The Day After Mirai: A Survey on MQTT Security Solutions After the Largest Cyber-attack Carried Out through an Army of IoT Devices”, Proceedings of the 2nd International Conference on Internet of Things, Big Data and Security. SCITEPRESS - Science and Technology Publications, 2017. DOI: 10.5220/0006287302460253.
- 25. S.M. Almeghlef, A.A.-M. AL-Ghamdi, M.S. Ramzan, and M. Ragab, „Application Layer-Based Denial-of-Service Attacks Detection against IoT-CoAP”, Electronics, t. 12, nr 12, s. 2563, 2023, DOI: 10.3390/electronics12122563.
- 26. A.A. Alahmadi et al., „DDoS Attack Detection in IoT-Based Networks Using Machine Learning Models: A Survey and Research Directions”, Electronics, t. 12, nr 14, s. 3103, 2023, DOI: 10.3390/electronics12143103.
- 27. P. Machaka, O. Ajayi, H. Maluleke, F. Kahenga, A. Bagula, and K. Kyamakya, „Modelling DDoS Attacks in IoT Networks using Machine Learning”, 2021, arXiv. DOI: 10.48550/ARXIV.2112.05477.
- 28. A.K.B. Arnob, M.F. Mridha, M. Safran, M. Amiruzzaman, Md. R. Islam, „An En-hanced LSTM Approach for Detecting IoT-Based DDoS Attacks Using Honeypot Data”, Int J Comput Intell Syst, t. 18, nr 1, 2025, DOI: 10.1007/s44196-025-00741-7.
- 29. H.A. Sakr, M.M. Fouda, A.F. Ashour, A. Abdelhafeez, M.I. El-Afifi, and M. Refaat Abdellah, „Machine learning-based detection of DDoS attacks on IoT devices in multi-energy systems”, Egyptian Informatics Journal, t. 28, s. 100540, 2024, DOI: 10.1016/j.eij.2024.100540.
- 30. M. Alqahtani, H. Mathkour, and M.M. Ben Ismail, „IoT Botnet Attack Detection Based on Optimized Extreme Gradient Boosting and Feature Selection”, Sensors, t. 20, nr 21, s. 6336, 2020, DOI: 10.3390/s20216336.
- 31. A. Alrefaei i M. Ilyas, „Using Machine Learning Multiclass Classification Technique to Detect IoT Attacks in Real Time”, Sensors, t. 24, nr 14, s. 4516, 2024, DOI: 10.3390/s24144516.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6cb478b-1b60-469d-815c-301eedf23ee4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.