PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructural Characterization of Several Coatings Deposited on TiAlNb Intermetallic Alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Charakterystyka mikrostruktury wybranych warstw wytworzonych na podłożu stopu tytanu na osnowie fazy międzymetalicznej TiAlNb
Języki publikacji
EN
Abstrakty
EN
Titanium alloys based on the γ -TiAl intermetallic phase are a type of material which may replace nickel supperalloys in high temperature applications. Not enough resistance to corrosion at temperatures above 900°C remains the biggest limitation in industrial practices. The paper presents results of preliminary research into application of new type heat resistant coatings on the basis of γ -TiAl alloy. MeCrAlY and Si coatings were formed by pack cementation method. Aluminide coatings were deposited by pack cementation method and VPA. Research results have shown that except for the coating formed by VPA, coatings were characterized by high porosity and therefore would not ensure appropriate protection against oxidation. Further research will be necessary into application of the VPA method in protecting γ-TiAl titanium alloys in order to improve their heat resistance.
PL
Stopy na osnowie fazy międzymetalicznej γ-TiAl stanowią materiał, który może stanowić zamiennik nadstopów niklu w aplikacjach wysokotemperaturowych. Nadal największym ograniczeniem w ich przemysłowym zastosowaniu jest niewystarczająca odporność na utlenianie w temperaturze powyzej 900°C. W artykule przedstawiono wyniki wstępnych badań nad zastosowaniem nowych rodzajów powłok żaroodpornych na podłożu stopu γ-TiAl. Wytworzono powłoki MeCrAlY oraz Si metodą zawiesinową a także powłoki aluminidkowe metodą pack cementation oraz VPA. Wyniki badań wykazały że poza powłoką wytworzoną metodą VPA pozostałe charakteryzowały się dużą porowatością przez co nie moga zapewnić odpowiedniej ochrony przed utlenianiem. Wskazano na konieczność dalszych badań nad zastosowaniem metody VPA do ochrony stopów tytanu γ-TiAl w celu poprawy ich żaroodporności.
Twórcy
autor
  • Rzeszów University of Technology, Department of Materials Science, Powstańców Warszawy 12, 35-959 Rzeszów, Poland
autor
  • Rzeszów University of Technology, Department of Materials Science, Powstańców Warszawy 12, 35-959 Rzeszów, Poland
autor
  • Rzeszów University of Technology, Department of Materials Science, Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Bibliografia
  • [1] E. A. Loria, Quo vadis gamma titanium aluminide, Intermetallics 9, 12, 997-1001 (2001).
  • [2] D. M. Dimiduk, Gamma titanium aluminide alloys - an assessment within the competition of aerospace structural materials, Materials Science and Engineering: A 263, 2, May 15, 281-288 (1999).
  • [3] T. Tetsui, Development of a TiAl turbocharger for passenger vehicles, Materials Science and Engineering: A 329-331, Complete, June, 582-588 (2002).
  • [4] W.B. Retallick, M.P. Brady, D.L. Humprey, Phosphoric acid surface treatment for improved oxidation resistance of gamma titanium aluminides, Intermetallics 6, 335-337 (1998).
  • [5] M. U. Yang, S. K. Wu, The improvement of high-temperature oxidation of Ti-50Al by anodic coating in the phosphoric acid, Acta Materialia 50, 691-701 (2002).
  • [6] V. A. C. Haanappel, M. F. Stroosnijder, Ion implantation technique as research tool for improving oxidation behavior of TiAl Based intermetallic alloys, Surface Engineering 15, 2, 119-125 (1999).
  • [7] M. K. Lei, X. P. Zhu, X. J. Wang, Oxidation resistance of ion-implanted -TiAl base intermetallics, Oxidation of Metals 58, 3/4, 361-374 (2002).
  • [8] S. Taniguchi, K. Uesaki, Y. C. Zhy, Y. Matsumoto, T. Shibata, Influence of implantation of Al, Si, Cr or Mo ion on the oxidation behavior of TiAl under thermal cyclic conditions, Materials Science and Engineering A 266, 267-275 (1999).
  • [9] X. Y. Li, S. Taniguchi, Oxidation behavior of a -TiAl-based alloy implanted by silicon and/or carbon Materials Science Engineering A 398, 1-2, May 25, 268-274 (2005).
  • [10] U. Hornauer, E. Richter, W. Matz, H. Reuther, A. Mucklich, E. Wieser, W. Moller, G. Schumacher, M. Shutze, Microstructure and oxidation kinetics of intermetallic TiAl after Si and Mo ion implantation, Surface and Coatings Technology 128-129, 418-422 (2000).
  • [11] X. Y. Li, S. Taniguchi, Y. C. Zhu, K. Fujita, N. Iwamoto, Y. Matsunaga, K. Nakagawa, Oxidation behavior of TiAl protected by Si-Nb combined ion implantation, Intermetallics 9, 443-449 (2001).
  • [12] A. Katsman, W. T. Glinzburg, I. Cohen, L. Levin, Nickel-aluminide coating of TiAl by two-stage process, Surface and Coatings Technology 127, 220-223 (2000).
  • [13] T. C. Munoro, B. Gleeson, The deposition and oxidation resistance of aluminide coatings on -TiAl, Materials Science Forum 251-254, 753-760 (1997).
  • [14] Z. D. Xiang, S. Rose, P. K. Datta, Pack deposition of coherent aluminide coatings on -TiAl for enhancing its high temperature oxidation resistance, Surface and Coatings Technology 161, 286-292 (2002).
  • [15] H. G. Kim, K. Y.Kim, Effect of ternary elements on oxidation behavior of aluminized TiAl alloys, Oxidation of Metals 58, 1-2, 197-216 (2002).
  • [16] V. Dalibor, B. Bartova, T. Kubatik, High Temperature xidation of titanium-silicon alloys, Materials Science and Engineering A A364, 50-57 (2003).
  • [17] Z. D. Xiang, S. R. Rose, J. S. Burnell-Gray, P. K. Datta, Co-deposition of aluminide and silicide coatings on-TiAl by pack cementation process, Journal of Materials Science 38, 1, January, 19-28 (2003).
  • [18] Z. D. Xiang, S. R. Rose, P. K. Datta, Vapour phase codeposition of Al and Si to form diffusion coatings on -TiAl, Materials Science and Engineering, A 356, 1-2, September 15, 181-189 (2003).
  • [19] Z. D. Xiong, S. R. Rose, P. K. Datta, Difuusion coatings resistant to oxidation for -TiAl by pack codeposition of Al and Si, Materials Science and Technology 19, 1247-1252 (2002).
  • [20] Z. D. Xiang, S. R. Rose, P. K. Datta, Oxidation resistance of diffusion coatings formed by pack-codeposition of Al and Si on -TiAl, Journal of Materials Science 39, 6, March, 2099-2106 (2004).
  • [21] H. P. Xiong, W. Mao, Y. H. Xie, Y. Y. Cheng, X. H. Li, Formation of silicide coatings on the surface of a TiAl-based alloy and improvement in oxidation resistance, Materials Science and Engineering: A 391, 1-2, January 25, 10-18 (2005).
  • [22] L. Swadzba, A. Maciejny, B. Mendala, G. Moskal, G. Jarczyk, Structure and resistance to oxidation of an Al-Si diffusion coating deposited by Arc-PVD on a TiAlCrNb alloy, Surface and Coatings Technology 165, 3, February 17, 273-280 (2003).
  • [23] G. Moskal, M. Góral, L. Swadzba, B. Mendala, Characterization of TiAlSi coating deposited by Arc-PVD method on TiAlCrNb intermetallic base alloy, Defect and Diffusion Forum 237-240, 1153-1156 (2005).
  • [24] L. Swadzba, G. Moskal, M. Hetmanczyk, B. Mendala, G. Jarczyk, Long-term cyclic oxidation of Al-Si diffusion coatings deposited by Arc-PVD on TiAlCrNb alloy, Surface and Coatings Technology 184, 1, June 1, 93-101 (2004).
  • [25] M. Góral, L. Swadzba, G. Moskal, M. Hetmanczyk, T. Tetsui, Si-modified aluminide coatings deposited on Ti46Al7Nb alloy by slurry method, Intermetallics 17, 11, November, 965-967 (2009).
  • [26] M. Goral, G. Moskal, L. Swadzba, Gas phase aluminizing of TiAl intermetallics, Intermetallics 17, 8, August, 669-671 (2009).
  • [27] M. Goral, L. Swadzba, G. Moskal, G. Jarczyk, J. Aguilar, Diffusion aluminide coatings for TiAl intermetallic turbine blade,s Intermetallics 19, 5, May, 744-747 (2011).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6cb10c5-ce17-4b65-bd4e-b091ab7596d6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.