Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents a modification of nonlinear state-space projections (NSSP) method. The proposed approach deals with the sub-space estimation problem. In the original NSSP method, the principal component analysis (PCA) is used for the subspace determination. The classical PCA uses L2-norm. It is well known that the L2-norm is sensitive to outliers. Thus, in this paper the L1-norm PCA is proposed a subspace determination. In numerical experiments an analytic signal and real ECG signals are processed with the proposed method. The signals are contaminated with Gaussian distributed noise with different signal to noise ratio (SNR). Obtained results confirm the usefulness of the proposed modification.
Rocznik
Tom
Strony
79--86
Opis fizyczny
Bibliogr. 14 poz., tab., wykr.
Twórcy
autor
- Silesian University of Technology, Institute of Electronics, Akademicka St. 16, 44-100 Gliwice, Poland
autor
- Institute of Medical Technology and Equipment, Biomedical Signal Processing Department, Roosevelta St. 118, 41-800 Zabrze, Poland.
autor
- Silesian University of Technology, Institute of Electronics, Akademicka St. 16, 44-100 Gliwice, Poland
autor
- Silesian University of Technology, Institute of Electronics, Akademicka St. 16, 44-100 Gliwice, Poland
autor
- Institute of Medical Technology and Equipment, Biomedical Signal Processing Department, Roosevelta St. 118, 41-800 Zabrze, Poland.
autor
- Institute of Medical Technology and Equipment, Biomedical Signal Processing Department, Roosevelta St. 118, 41-800 Zabrze, Poland.
Bibliografia
- [1] ELSHORBAGY A., SIMONOVIC S. P., PANU U. S., Noise reduction in chaotic hydrologic time series: facts and doubts, J. Hydrology, 2002, No. 256, pp. 147-165.
- [2] GOLUB G., Van LOAN Ch., Matrix computation, The Johns Hopkins Univ. Press, 1996.
- [3] GRASSBERGER P., HEGGER R. et. al., On noise reduction methods for chaotic data, Chaos 3, 1992, pp. 127-141.
- [4] JANE R., RIX H. at.al. Aligment methods for averaging of high resolution cardiac signals: a comparative study of performance, IEEE Trans. Biomed. Eng., 1991, Vol. 38, pp. 571-579.
- [5] JOLLIFE I. T., Principal component analysis, Springer, New York, 2002.
- [6] KANTZ H., SCHREIBER T., Nonlinear time series analysis, Cambridge Univ. Press, 2004.
- [7] KOTAS M., Robust projective filtering of time-warped ECG beats, Comp. Methods and Programs in Biomedicne, 2008, No. 92, pp. 161-172.
- [8] KOTAS M., Projective filtering of time warped ECG beats, Comp. in Biology and Medicine, 2008, No. 38, pp. 127-137.
- [9] NIE F., HUANG H. et al, Robust principal component analysis with non-greedy l1-norm maximization, Proc. 22nd Int’l Conf. Artificial Intelligence, 2011.
- [10] KWAK N., Principal component analysis based on L1-norm maximization, IEEE Trans. Pattern Analysis and Machine Learning, 2008, Vol. 30, No. 9, pp. 1672-1680.
- [11] PAHLM O., SORNMO L., Data processing of exercisse ECG’s, IEEE Trans. Biomed. Eng., 1987, Vol. BME-34, pp. 158-165.
- [12] RICHTER M., SCHREIBER T., Fetal ECG extraction with nonlinear state space projections, IEEE Trans. Biomed. Eng., 1998, Vol. 45, pp. 133-137.
- [13] TAKENS E., Detecting strange attractors in turbulence, Lecture Notes in Math, 1981, Vol. 898, pp. 366-381.
- [14] SCHREIBER T., KAPLAN D., Nonlinear noise reduction for electrocardiograms, Chaos, 1996, Vol. 6, pp. 87-92.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6c3e691-e6a1-4522-89a1-964c116f15ec