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PROJECTIVE FILTERING BASED ON
L1-NORM PCA

The paper presents a modification of nonlinear state-space projections (NSSP) method. The proposed
approach deals with the sub-space estimation problem. In the original NSSP method, the principal component
analysis (PCA) is used for the subspace determination. The classical PCA uses L2-norm. It is well known that
the L2-norm is sensitive to outliers. Thus, in this paper the L1-norm PCA is proposed a subspace determination.
In numerical experiments an analytic signal and real ECG signals are processed with the proposed method. The
signals are contaminated with Gaussian distributed noise with different signal to noise ratio (SNR). Obtained
results confirm the usefulness of the proposed modification.

1. INTRODUCTION

In many cases recorded biomedical signals contain unwanted component i.e. noise. A filtering process
is applied for the noise suppression. Linear filters are successfully applied when the a noise frequency
band does not overlap a frequency band of the processed signal. Significant progress in biomedical signal
processing was achieved by applications of digital filters [11]. Unfortunately, the wide frequency band
of the noise that overlaps the frequency band of the processed signal makes the filters practically useless.
The synchronized averaging technique was introduced to cope with overlapping frequency bands [4].
Due to increasing computational power of computers, methods from the field of nonlinear dynamics are
taken into account. One of these methods is the nonlinear state-space projection method (NSSP). The
nonlinear state-space projection filtering was successfully applied to the ECG noise reduction [14], [8],
the fetal ECG extraction [12] or the noise reduction in hydrologic time series [1]. For the projection
subspace estimation, the NSSP methods involve principal component analysis (PCA). The classical
PCA is based on the L2-norm, which is sensitive to outliers. Thus, the purpose of this work is to apply
the L1-norm principal component analysis. In such a way the determination of the projective subspace
becomes more robust.

This paper is organized as follows. Section 2 introduces the rules of the phase-space reconstruction
as well as the principal component analysis based on either the L2-norm or the L1-norm. In Section 3
the performance of proposed approach is investigated. Section 4 contains a summary.

2. METHODS

The following steps are carried out to perform nonlinear projective filtering [3], [6]. First, the phase-
space is reconstructed by applying the Takens theory. After the phase-space reconstruction, each point
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of the trajectory is corrected. The correction stage consists of the following steps. In the first step, a
vicinity is determined for each point of the trajectory. Next, based on the vicinity, a new subspace is
determined and the corrected point is projected on it. The dimension of the sub-space is lower than the
dimension of the phase-space. In the successive step, a reconstruction in the phase-space is performed
on modified point. Finally, the time domain representation of the processed signal is computed. Below,
the mentioned stages of the projective filtering are described in more details.

2.1. STATE-SPACE RECONSTRUCTION METHOD

The applied technique is an outcome of the theory of nonlinear dynamical systems. In deterministic
dynamical systems, the post-transient trajectory of the system is frequently confined to a set of points in
the state-space, called an attractor [6]. The state-space can be reconstructed by the Takens embedding
operation [13]. For a given signal xN , the point in the reconstructed state-space is given by

xn = [x(n), x(n+ τ), . . . , x(n+ (m− 1)τ)] , (1)

where x(n) is the processed signal, N is the length of the signal, τ is the time lag and m is the
embedding dimension. The product (m− 1)τ is the embedding window. In many applications, the time
lag τ = 1 is advantageous [14], [8]. So, henceforth this time lag value will be used in this study. The
whole processed signal xN which is represented by a vector in the time domain, in the phase-space is
represented by the matrix X given by

X =



...
...

xn−m+1 xn−m+2 . . . xn−1 xn
...

...
xn−1 xn . . . xn+m−3 xn+m−2
xn xn+1 . . . xn+m−2 xn+m−1
...

...


(2)

where: xn denotes the amplitude of a processed signal at the time stamp n. It is essential for the
time-domain reconstruction, that the element xn occurs m times in the phase-space representation.

2.2. VICINITY DETERMINATION AND PCA

Let x(n) be a point in the reconstructed phase-space. The vicinity X (n) of x(n) contains points of the
trajectory which are close to x(n), i.e.

X (n) =
{
xk|
∥∥xk − x(n)

∥∥ < ε
}
, (3)

where ε is a radius of a hypersphere which has the center at x(n) and ‖ · ‖ denotes the Euclidean
distance. The radius value ε should be selected in such way, that the cardinal number of X (n) should
not be lower than an assumed value Nmin.

Principal component analysis (PCA) is a technique for extracting a structure from high-dimensional
data sets [5]. PCA is an orthogonal transformation of the coordinate systems in which the data are
described. The new coordinate system (known as the principal coordinates) is obtained by the projection
onto the so-called principal axes of the data. Let X (n) =

{
x
(n)
1 ,x

(n)
2 , . . . ,x

(n)
N ,
}

be a vicinity of x(n),

where x
(n)
i ∈ Rm. Each element from the dataset is described by m features associated with the time

stamp (i). Determination of the principal axes begins with centering the data samples and then computing
the sample covariance matrix, i.e.

CX =
1

N

N∑
i=1

(
x
(n)
i − x̄(n)

)(
x
(n)
i − x̄(n)

)T
, (4)
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where x̄(n) is the sample mean,

x̄(n) =
1

N

N∑
i=1

x
(n)
i ,

and N = |X (n)| is the cardinal number of the dataset.
The principal axes wi (1 ≤ i ≤ l) are equal to the eigenvectors that correspond to the largest

eigenvalues of the covariance matrix CX . The projection onto l-dimensional principal space is a linear
transformation of x(n) which is performed according to the following equation

y(n) = WT
(
x(n) − x̄(n)

)
, (5)

where y(n) ∈ Rl is the l-dimensional representation of x(n) and W = [w1, . . . ,wl] is the projection
matrix.

A reconstruction of the corrected point y(n) in the m-dimensional space is given by

x̂(n) = Wy(n) = WWT
(
x(n) − x̄(n)

)
+ x̄(n). (6)

The signal sample xn occurs m times in the phase-space representation. Hence, the value of the filtered
signal at the time stamp n is determined as a sample mean from m subsequent vector components in
the phase-space, i.e.

x̂(n) =
1

m

m∑
i=1

xn−i+1
i , (7)

where x(n−i+1)
i denotes the i-th component of the vector x̂(n−i+1) in the phase space.

2.3. L1-NORM PCA

The PCA can be viewed in several different, but equivalent ways: as the decomposition of a covariance
matrix based on its eigenvectors and eigenvalues, as a method for finding successive directions of
maximum variation in data, and as a method for linear subspace estimation [5]. L2-norm PCA tries to
find an l dimensional subspace (l < m). It is done by solving the following optimization problem [9],
[10]

W∗ = arg max
W
‖WTSXW‖2 = arg max

W
‖WTX‖2

subject to WTW = 1m

(8)

where SX = XTX is the covariance matrix and 1m is the m×m identity matrix. The solution of (8)
is provided by the singular value decomposition (SVD) [2]. The norm L2 is sensitive to outliers [10],
[7] while the L1-norm PCA resolves this problem. Similarly, applying the L1-norm to the optimization
task (8), the L1 PCA can be regarded as the following optimization problem [9]

W∗ = arg max
W
‖WTSXW‖1 = arg max

W
‖WTX‖1

subject to WTW = 1m

(9)

The first principal w1 can be computed by applying the following algorithm [10]:

1. Initialize w0 ∈ Rm, such that wT
0 w0 = 1, and fix p = 1,

2. wp =
∑N

i=1 sgn
(
wT

p−1xi

)
xi,

wp = wp

‖wp‖ ,
p = p+ 1

3. if wp 6= wp−1 then go to step 2, otherwise w1 = wp
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The above algorithm allows to determine the first principal component. However, this method can also
be used for a computation of an arbitrary number of principal components. The arbitrary number of
principal components l can be computed using the algorithm presented below [10]:

1. for a given dataset X, set w0 = 0,
2. for j=1 to l,
3. modify the dataset X(j) such as x

(j)
i = x

(j−1)
i −wj−1

(
wT

j−1x
(j−1)
i

)
, (1 ≤ i ≤ N ),

4. Apply the L1-norm PCA procedure to X(j).

Summarizing, the following step are carried out in the proposed nonlinear projective filtering method.

First, the phase-space representation is determined (1).

Next, a vicinity is determined for each point of the trajectory (3).

Based on the L1-norm PCA a new subspace with lower dimensionality is computed and the corrected
point is projected onto determined subspace (5).

Next, a modified point in the phase-space is computed according to (6).

Finally, the time domain representation is determined by virtue of (7).

3. EXPERIMENTS

In our numerical experiments, an additive noise model is used, i.e.

x(n) = s(n) + av(n),

where: x(n) in the contaminated signal, s(n) is the original (noise-less, noise-free) signal, a is an
amplitude of the noise component and v(n) is the noise. For the assumend model, the signal to noise
ratio (SNR) is defined as follows

SNR = 10 log
σ2
s

a2σ2
v

,

where: σ2
s is the variance of the original signal and σ2

v is the noise variance. In the conducted experiments,
the noise variance is set up to σ2

v = 4.
In the numerical experiment two kinds of the signal are selected. Both signals are contaminated with

the Gaussian distributed noise. The proposed method is tested for different levels of signal to noise ratio
(SNR) and for different dimensions of the subspace. Noise reduction factor (NRF) is used to quantify
the filtering efficacy. The NRF parameter is defined as follows [14]:

NRF =

√
‖yN − xN‖2
‖cN − xN‖2

,

where: xN is the original signal, yN is the artificially contaminated signal, and cN is the result of filtering
yN . The nonlinear projective filtering method with the classical PCA is used as the reference method.

In the first experiment a fully deterministic signal which is the sinusoidal signal with the amplitude
A = 1 and the frequency f = 5Hz is used. This signal is sampled with the sampling frequency
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fs = 100Hz. Fig. 1 depicts an example of the contaminated signal as well as the obtained signals
from the proposed method and the reference one. For the both methods, the dimension of subspace
is l = 1. The embedding dimension is selected in such a way that the vector contains at least one
period of the processed signal. For the filtering process, the embedding dimension is m = 30. For the
vicinity determination, the radius is chosen in such a way that the cardinal number of the vicinity is
greater than Nmin = 50. On the top of Fig. 1 the contaminated sinusoidal signal with Gaussian noise
for SNR = 0dB. Middle of Fig. 1 depicts the obtained signal from the proposed method, and on
the bottom the obtained signal from the reference method is presented. Tab. 1 contains values of NRF
parameter for different values of SNR and different subspace dimensions.

Table 1. Noise reduction factor obtained for the proposed method and the reference one applied to the artificial signal. The embedding

dimension is m = 30.

NRF
SNR [dB] NSSP L1 NSSP L2

l = 2 l = 1 l = 2 l = 1

10 3.5675 4.0708 3.5604 4.0529

0 3.1135 3.3663 2.2350 2.7072

In the second experiment, the real ECG signal is used. This signal is a record 100.dat from the
MITBIH database. This signal is stored with the sampling frequency fs = 360Hz. Similarly as in
the previous experiment, the computations are conducted for two different SNRs and two different
subspace dimension. The embedding dimension is chosen in such way that the vector in the phasespace
contains QRS complex. During the filtering, the embedding dimension is m = 110, which corresponds
to t = 300ms. As in the previous experiment, the vicinity radius is selected such that the vicinity
includes at least Nmin = 50 neighbours. Fig. 2 presents the ECG signal. The original signal is presented
on the top. Below, the corrupted signal is presented, where signal to noise ratio is SNR = 0dB. Fig. 2C:
the obtained signal from the proposed method is presented. The signal obtained from reference method
is presented on the bottom. Tab. 2 shows obtained values of the NRF parameter for different values of
SNR and different dimensions of the subspace.

Table 2. Noise reduction factor obtained for the proposed method and the reference one applied to the ECG signal. The embedding

dimension is m = 110.

NRF
SNR [dB] NSSP L1 NSSP L2

l = 2 l = 1 l = 2 l = 1

10 2.4056 2.2918 1.8358 1.8362

0 4.3088 4.3054 2.3071 2.4699

4. CONCLUSIONS

The nonlinear phasespace projective filtering method is successfully applied in many fields of appli-
cations such as: de-noising of biomedical signals or the noise reduction in hydrologic time series. The
idea of projective filtering rely on processing of the time series in the phasespace. Next, a subspace is
determined and then each point of the trajectory is projected onto this subspace. The dimension of the
subspace is much lower than the dimension of the phasespace. In the successive step of filtering, based
on the subspace the phasespace is reconstructed. Finally, the representation of the processed signal is
determined in time domain. The projecting subspace is determined by the principal component analysis
(PCA) method. The traditional PCA uses the L2-norm. It is well known that the L2-norm is sensitive
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Fig. 1. Noise reduction of an analytical signal. Upper: the sinusoidal signal with the amplitude 1V and the frequency f = 5Hz. Middle:
the test signal after nonlinear filtering with the proposed method. Lower: the test signal after filtering with the reference method. The
embedding dimension is m = 30.

to the outliers in the input data. Thus, in this paper we propose the L1-norm PCA as the method for
subspace computation. The proposed method is applied to two kinds of signals: a pure analytic signal
and the real ECG signal. The noise reduction factor (NRF) is used as the quantity of filtering efficacy.
The proposed method, with the L1-norm PCA, gives higher values of NRF parameter than the reference
method that uses the L2-norm PCA. This means that the noise suppression efficacy is better for the
proposed method.
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Fig. 2. Noise reduction on an electrocardiogram. A: the original signal, B: the contaminated signal with SNR=0dB. C: The filtered signal
obtained with the proposed method. D: The filtered signal obtained with the reference method. The embedding dimension is m = 110.

BIBLIOGRAPHY

[1] ELSHORBAGY A., SIMONOVIC S. P., PANU U. S., Noise reduction in chaotic hydrologic time series: facts and doubts, J.
Hydrology, 2002, No. 256, pp. 147-165.

[2] GOLUB G., Van LOAN Ch., Matrix computation, The Johns Hopkins Univ. Press, 1996.
[3] GRASSBERGER P., HEGGER R. et. al., On noise reduction methods for chaotic data, Chaos 3, 1992, pp. 127-141.
[4] JANE R., RIX H. at.al. Aligment methods for averaging of high resolution cardiac signals: a comparative study of performance,

IEEE Trans. Biomed. Eng., 1991, Vol. 38, pp. 571-579.
[5] JOLLIFE I. T., Principal component analysis, Springer, New York, 2002.
[6] KANTZ H., SCHREIBER T., Nonlinear time series analysis, Cambridge Univ. Press, 2004.
[7] KOTAS M., Robust projective filtering of time-warped ECG beats, Comp. Methods and Programs in Biomedicne, 2008, No. 92, pp.

161-172.
[8] KOTAS M., Projective filtering of time warped ECG beats, Comp. in Biology and Medicine, 2008, No. 38, pp. 127-137.
[9] NIE F., HUANG H. et al, Robust principal component analysis with non-greedy l1-norm maximization, Proc. 22nd Int’l Conf.

85



MEDICAL DATA ANALYSIS AND MONITORING SYSTEMS

Artificial Intelligence, 2011.
[10] KWAK N., Principal component analysis based on L1-norm maximization, IEEE Trans. Pattern Analysis and Machine Learning,

2008, Vol. 30, No. 9, pp. 1672-1680.
[11] PAHLM O., SORNMO L., Data processing of exercisse ECG’s, IEEE Trans. Biomed. Eng., 1987, Vol. BME-34, pp. 158-165.
[12] RICHTER M., SCHREIBER T., Fetal ECG extraction with nonlinear state space projections, IEEE Trans. Biomed. Eng., 1998, Vol.

45, pp. 133-137.
[13] TAKENS E., Detecting strange attractors in turbulence, Lecture Notes in Math, 1981, Vol. 898, pp. 366-381.
[14] SCHREIBER T., KAPLAN D., Nonlinear noise reduction for electrocardiograms, Chaos, 1996, Vol. 6, pp. 87-92.

86


