PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nonlinear Excitation of the Non-Wave Perturbations by the Magnetoacoustic Waves in the Non-Isentropic Plasma

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nonlinear excitation of slow modes by the planar magnetosonic perturbations in a plasma is discussed. Plasma is an open system due to radiation and external heating. This may stipulate enhancement of wave perturbations and hence the acoustical activity of plasma. Plasma is assumed to be a homogeneous ideal gas with infinite electrical conductivity. The straight magnetic field is orthogonal to the velocity of fluid’s elements. Nonlinear excitation of the non-wave modes (that is, the Alfvén and the entropy modes) by periodic and aperiodic planar magnetoacoustic perturbations, is discussed. The sawtooth wave and the small-magnitude harmonic wave are considered as examples of periodic in time perturbations. The conclusions concern acoustically active and thermally unstable flows as well.
Rocznik
Strony
21--29
Opis fizyczny
Bibliogr. 18 poz., wykr.
Twórcy
  • Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • 1. Chin R., Verwichte E., Rowlands G., Nakariakov V. M. (2010), Self-organisation of magnetoacoustic waves in a thermal unstable environment, Physics of Plasmas, 17, 32, 107-118.
  • 2. De Moortel I., Hood A. W. (2004), The damping of slow MHD waves in solar coronal magnetic fields. II. The effect of gravitational stratification and field line divergence, Astronomy and Astrophysics, 415, 2, 705-715, http://dx.doi.org/10.1051/0004-6361:20034233.
  • 3. Field G. B. (1965), Thermal instability, The Astrophysical Journal, 142, 531-567.
  • 4. Hamilton M., Morfey C. (1998), Model equations, [in:] Nonlinear acoustics, Hamilton M., Blackstock D. [Eds.], pp. 41-63, Academic Press, New York.
  • 5. Kelly A., Nakariakov V. M. (2004), Coronal seismology by MHD autowaves, Proceedings of SOHO 13 Waves, Oscillations and Small-Scale Transients Events in the Solar Atmosphere: a joint view from SOHO and TRACE, Lacoste H. [Ed.], 547, pp. 483-488.
  • 6. Liu W., Ofman L. (2014), Advances in observing various coronal EUV waves in the SDO era and their seismological applications (invited review), Solar Physics, 289, 9, 3233-3277, http://dx.doi.org/10.1007/s11207-014-0528-4.
  • 7. Molevich N. E. (2001), Sound amplification in inhomogeneous flows of nonequilibrium gas, Acoustical Physics, 47, 1, 102-105, doi: 10.1134/1.1340086.
  • 8. Molevich N. E., Zavershinsky D. I., Galimov R. N., Makaryan V. G. (2011), Traveling self-sustained structures in interstellar clouds with the isentropic instability, Astrophysics and Space Science, 334, 35-44, doi: 10.1007/s10509-011-0683-0.
  • 9. Nakariakov V. M., Mendoza-Briceño C. A., Ibáñez M. H. (2000), Magnetoacoustic waves of small amplitude in optically thin quasi-isentropic plasmas, Astrophysical Journal, 528, 2, 767-775, http://dx.doi.org/10.1086/308195.
  • 10. Osipov A. I., Uvarov A. V. (1992), Kinetic and gasdynamic processes in nonequilibrium molecular physics, Soviet Physics Uspekhi, 35, 11, 903-923.
  • 11. Perelomova A. (2016a), On the nonlinear effects of magnetoacoustic perturbations in a perfectly conducting viscous and thermoconducting gas, Acta Physica Polonica A, 130, 3, 727-733, http://dx.doi.org/10.12693/APhysPolA.130.727.
  • 12. Perelomova A. (2016b), On the nonlinear distortions of sound and its coupling with other modes in a gaseous plasma with finite electric conductivity in a magnetic field, Archives of Acoustics, 41, 4, 691-699, http://dx.doi.org/10.1515/aoa-2016-0066.
  • 13. Petviashvili V. I., Pokhotelov O. A. (1992), Solitary waves in plasmas and in the atmosphere, Gordon and Breach, Berlin.
  • 14. Rosner R., Tucker W. H. (1978), Dynamics of the quiescent solar corona, Astrophysical Journal, 220, 643-645, doi: 10.1086/155949.
  • 15. Rudenko O. V., Soluyan S. I. (1977), Theoretical foundations of nonlinear acoustics, Plenum, New York.
  • 16. Ruderman M. S. (2013), Nonlinear damped standing slow waves in hot coronal magnetic loops, Astronomy and Astrophysics, 553, A23, http://dx.doi.org/10.1051/0004-6361/201321175.
  • 17. Sagdeev R. Z., Galeev A. A. (1969), Nonlinear plasma theory, Benjamin, New York.
  • 18. Sharma V. D., Singh L. P., Ram R. (1987), The progressive wave approach analyzing the decay of a sawtooth profile in magnetogasdynamics, Physics of Fluids, 30, 5, 1572-1574, https://doi.org/10.1063/1.866222.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6c20331-bb01-4e5a-98ed-437468eddebd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.