PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Jiroft refractory manganese ore leaching using oxalic acid as reducing agent in sulfuric acid solution

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Leaching process of Jiroft refractory manganese ore was investigated. The effects of operating parameters such as liquid to solid ratio, pulp temperature, sulfuric acid concentration, and oxalic acid concentration were studied and the optimization was done through the response surface methodology (RSM) based on central composite design (CCD) model. The recoveries of Mn, Fe and Si were selected as response of design. The optimum condition was determined by ANOVA, indicating that the liquid to solid ratio, oxalic acid concentration and pulp temperature for Mn recovery and liquid to solid ratio, pulp temperature and sulfuric acid concentration for Fe recovery and liquid to solid ratio for Si recovery were the most effective parameters, respectively. Under the optimum conditions of liquid to solid ratio= 11.8%, pulp temperature= 70 ℃ sulfuric acid concentration= 40 g/L and oxalic acid concentration= 35 g/L, 71.1%, 4.67% and 0.6% of Mn, Fe and Si were recovered, respectively.
Słowa kluczowe
Rocznik
Strony
374--385
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr., wz.
Twórcy
  • Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran, Iran
  • Department of Mining Engineering, University of Kashan, Iran
  • Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran, Iran
  • Department of Mining Engineering, University of Kashan, Iran
Bibliografia
  • ABBRUZZESE, C., DUARTE, M., PAPONETTI, B. & TORO, L. 1990. Biological and chemical processing of low-grade manganese ores. Minerals Engineering, 3, 307-318.
  • AZIZI, D., SHAFAEI, S. Z., NOAPARAST, M. & ABDOLLAHI, H. 2012. Modeling and optimization of low-grade Mn bearing ore leaching using response surface methodology and central composite rotatable design. Transactions of Nonferrous Metals Society of China, 22, 2295-2305.
  • BEHERA, S. K., MEENA, H., CHAKRABORTY, S. & MEIKAP, B. 2018. Application of response surface methodology (RSM) for optimization of leaching parameters for ash reduction from low-grade coal. International Journal of Mining Science and Technology, 28, 621-629.
  • CHENG, Z., ZHU, G. & ZHAO, Y. 2009. Study in reduction-roast leaching manganese from low-grade manganese dioxide ores using cornstalk as reductant. Hydrometallurgy, 96, 176-179.
  • DEIHIMI, N., IRANNAJAD, M. & REZAI, B. 2018. Equilibrium and kinetic studies of ferricyanide adsorption from aqueous solution by activated red mud. Journal of environmental management, 227, 277-285.
  • DONG, L., PARK, K.-H., ZHAN, W. & GUO, X.-Y. 2010. Response surface design for nickel recovery from laterite by sulfation-roasting-leaching process. Transactions of Nonferrous Metals Society of China, 20, s92-s96.
  • EL HAZEK, M., LASHEEN, T. & HELAL, A. 2006. Reductive leaching of manganese from low grade Sinai ore in HCl using H2O2 as reductant. Hydrometallurgy, 84, 187-191.
  • FEGADE, S. L., TANDE, B. M., CHO, H., SEAMES, W. S., SAKODYNSKAYA, I., MUGGLI, D. S. & KOZLIAK, E. I.2013. Aromatization of propylene over Hzsm-5: A design of experiments (DOE) approach. Chemical Engineering Communications, 200, 1039-1056.
  • GADD, G. M. 1999. Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Advances in microbial physiology. Elsevier.
  • GODUNOV, E., ARTAMONOVA, I., GORICHEV, I. & LAINER, Y. A. 2012. Influence of oxalic acid on the dissolution kinetics of manganese oxide. Russian metallurgy (Metally), 2012, 935-941.
  • HABASHI, F. 1993. A textbook of hydrometallurgy, metallurgie extractive Quebec. Enr. Que., Canada.
  • HARIPRASAD, D., DASH, B., GHOSH, M. & ANAND, S. 2007. Leaching of manganese ores using sawdust as a reductant. Minerals Engineering, 20, 1293-1295.
  • HARIPRASAD, D., MOHAPATRA, M. & ANAND, S. 2018. Reductive Leaching of Manganese Nodule Using Saw Dust in Sulphuric Acid Medium. Transactions of the Indian Institute of Metals, 71, 2971-2983.
  • HOSEINIAN, F., REZAI, B. & KOWSARI, E. 2019. Optimization and separation mechanism of Ni (II) removal from synthetic wastewater using response surface method. International Journal of Environmental Science and Technology, 16, 4915-4924.
  • KHAN, M. H. & KURNY, A. 2014. Kinetics of simultaneous dissolution of zinc and manganese from electrolyte paste of spent zinc-carbon dry cell battery in sulfuric acid solution. Materials Science and Metallurgy Engineering, 2, 1-4.
  • KUSUMANINGRUM, R., FITROTUROKHMAH, A., SINAGA, G., WISMOGROHO, A., WIDAYATNO, W., DIGUNA, L. & AMAL, M. Study: leaching of zinc dust from electric arc furnace waste using oxalic acid. IOP Conference Series: Materials Science and Engineering, 2019. IOP Publishing, 012015.
  • MEHDILO, A., IRANNAJAD, M. & HOJJATI-RAD, M. R. 2013. Characterization and beneficiation of iranian low-grade manganese ore. Physicochemical Problems of Mineral Processing, 49.
  • MYERS, R. H., MONTGOMERY, D. C. & ANDERSON-COOK, C. M. 2016. Response surface methodology: process and product optimization using designed experiments, John Wiley & Sons.
  • PAGNANELLI, F., FURLANI, G., VALENTINI, P., VEGLIÒ, F. & TORO, L. 2004. Leaching of low-grade manganese ores by using nitric acid and glucose: optimization of the operating conditions. Hydrometallurgy, 75, 157-167.
  • QING, T., ZHONG, H., SHUAI, W., LI, J.-Z. & LIU, G.-Y. 2014. Reductive leaching of manganese oxide ores using waste tea as reductant in sulfuric acid solution. Transactions of Nonferrous Metals Society of China, 24, 861-867.
  • SAHOO, R., NAIK, P. & DAS, S. 2001. Leaching of manganese from low-grade manganese ore using oxalic acid as reductant in sulphuric acid solution. Hydrometallurgy, 62, 157-163.
  • SHENG, Y. & QIU, Y.-R. 2014. Preparation of electronic grade manganese sulfate from leaching solution of ferromanganese slag. Transactions of Nonferrous Metals Society of China, 24, 3716-3721.
  • SOBOUTI, A., REZAI, B., HOSEINIAN, F. S. & MORADKHANI, D. 2019. Optimization and kinetics studies of lead concentrate leaching using fluoroboric acid. Physicochemical Problems of Mineral Processing, 55.
  • SUN, W.-Y., SU, S.-J., WANG, Q.-Y. & DING, S.-L. 2013. Lab-scale circulation process of electrolytic manganese production with low-grade pyrolusite leaching by SO2. Hydrometallurgy, 133, 118-125.
  • VU, H., JANDOVA, J., LISA, K. & VRANKA, F. 2005. Leaching of manganese deep ocean nodules in FeSO4–H2SO4– H2O solutions. Hydrometallurgy, 77, 147-153.
  • WANG, Y., JIN, S., LV, Y., ZHANG, Y. & SU, H. 2017. Hydrometallurgical process and kinetics of leaching manganese from semi-oxidized manganese ores with sucrose. Minerals, 7, 27.
  • WU, F.-F., ZHONG, H., WANG, S. & LAI, S.-F. 2014. Kinetics of reductive leaching of manganese oxide ore using cellulose as reductant. Journal of Central South University, 21, 1763-1770.
  • ZHANG, C., WANG, S., CAO, Z.-F. & ZHONG, H. 2018a. Kinetics and mechanism of one-step reductive leaching of manganese oxide ores by EDTA/EDTA-2Na. Physicochemical Problems of Mineral Processing, 54, 858-867.
  • ZHANG, C., WANG, S., CAO, Z.-F. & ZHONG, H. 2018b. Recovery of manganese from manganese oxide ores in the EDTA solution. Metallurgical Research & Technology, 115, 306.
  • ZHANG, W. & CHENG, C. Y. 2007. Manganese metallurgy review. Part I: Leaching of ores/secondary materials and recovery of electrolytic/chemical manganese dioxide. Hydrometallurgy, 89, 137-159.
  • ZHANG, Y., YOU, Z., LI, G. & JIANG, T. 2013. Manganese extraction by sulfur-based reduction roasting–acid leaching from low-grade manganese oxide ores. Hydrometallurgy, 133, 126-132.
Uwagi
The studies presented in the article were developed in the frame of the project funded by Polish National Centre of Science (Narodowe Centrum Nauki) on the basis of a decision No. 2011/03/D/ST8/04467.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6bf409c-4071-4bc6-a30a-6947a37ef37b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.