PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Particle Flow Code modeling of the mechanical behavior of layered rock under uniaxial compression

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Modelowanie właściwości mechanicznych skał warstwowych w warunkach ściskania jednoosiowego przy zastosowaniu oprogramowania Particle Flow Code(PFC)
Języki publikacji
EN
Abstrakty
EN
In this paper, the different mechanical behaviors of layered rocks with different bedding angles during uniaxial compression tests are studied. Numerical simulation models of layered rock are validated based on laboratory tests, and uniaxial compression tests are conducted by using Particle Flow Code (PFC). Using these simulations, the uniaxial compressive strength, failure patterns, development of micro-cracks, and displacement of meso particles are analyzed. When the bedding angle is similar to the failure angle, the macro failure planes develop directly along the beddings, the bedding behavior dictates the behavior of the layered rock, reducing the compressive strength.
PL
W pracy badano właściwości mechaniczne skał warstwowych zalegających pod różnym kątem uwarstwienia w warunkach ściskania jednoosiowego. Walidację modeli symulacyjnych skał warstwowych przeprowadzono w oparciu o wyniki badań laboratoryjnych, zaś testy ściskania jednoosiowego prowadzono z użyciem pakietu Particle Flow Code (PFC). W oparciu o badania symulacyjne, analizowano wytrzy-małość skał na ściskanie jednoosiowe, modele pękania, powstawanie mikropęknięć i przemieszczenia mezo- cząstek. W przypadku gdy kąt płaszczyzny uwarstwienia ma wartość przybliżoną do kąta pęknięcia, płaszczyzny pękania w skali makro pojawiają się wzdłuż spękań, a układ warstw skalnych determinuje ich wytrzymałość na ściskanie, powodując jej obniżenie.
Rocznik
Strony
181--196
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
  • School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
autor
  • School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
  • Hubei Key Laboratory for Efficient Utilization and Agglomeration of Met Allergic Mineral Resource, Wuhan 430081, China
autor
  • School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
autor
  • School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
autor
  • School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
Bibliografia
  • [1] Bieniawski Z.T., Bernede M.J., 1979. Suggested methods for determining the uniaxial compressive strength and deformability of rock materials: Part 1. Suggested method for determining deformability of rock materials in uniaxial compression. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts 16 (2), 138-140.
  • [2] Brady B.H.G., Brown E.T., 1994. Rock mechanics for underground mining. Chapman & Hall, London.
  • [3] Chang X., Wang J.H., Tang C.A., Ru Z.L., 2016. Effects of interface behavior on fracture spacing in layered rock. Rock Mechanics & Rock Engineering 49 (5), 1733-1746.
  • [4] Cho N., Martin C.D., Sego D.C., 2007. A clumped particle model for rock. International Journal of Rock Mechanics & Mining Sciences 44 (7), 997-1010.
  • [5] Dyskin A.V., Sahouryeh E., Jewell R.J., Joer H., Ustinov K.B., 2003. Influence of shape and locations of initial 3-D cracks on their growth in uniaxial compression. Engineering Fracture Mechanics 70 (15), 2115-2136.
  • [6] Fahimifar A., 2004. Strength and deformation properties of a schist rock in Isfahan. Iranian Journal of Science & Technology, Transaction B 28 (B5), 619-622.
  • [7] Ismael M.A., Imam H.F., EI-Shayeb Y., 2014. A simplified approach to directly consider intact rock anisotropy in Hoek-Brown failure criterion. Journal of Rock Mechanics and Geotechnical Engineering 6 (5), 486-492.
  • [8] Jaeger J.C., Cook N.G.W., 1976. Fundamentals of rock mechanics. Chapman & Hall, London.
  • [9] Jin J., Cao P., Chen Y., Pu C.Z, Mao D.W., Fan X., 2017. Influence of single flaw on the failure process and energy mechanics of rock-like material. Computers & Geotechnics 86, 150-162.
  • [10] Li L., Holt R.M., 2002. Particle scale reservoir mechanics. Oil & Gas Science and Technology 57 (5), 525-538.
  • [11] Liao J.J., Yang M.T., Hsieh H.Y., 1997. Direct tensile behavior of a transversely isotropic rock. International Journal of Rock Mechanics & Mining Sciences 34 (5), 837-849.
  • [12] Lin H., Cao P.,Wang Y.X., 2013. Numerical simulation of a layered rock under triaxial compression. International Journal of Rock Mechanics & Mining Sciences 60 (6), 12-18.
  • [13] Nasseri M.H.B, Rao K.S., Ramamurthy T., 2003. Anisotropic strength and deformational behavior of Himalayan schists. International Journal of Rock Mechanics & Mining Sciences 40 (1), 3-23.
  • [14] Niandou H., Shao J.F., Henry J.P., Fourmaintraux D., 1997. Laboratory investigation of the mechanical behaviour of Tournemire shale. International Journal of Rock Mechanics & Mining Sciences 34 (1), 3-16.
  • [15] Park C.H., Bobet A., 2010. Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression. Engineering Fracture Mechanics 77 (14), 2727-2748.
  • [16] Saeidi O., Rasouli V., Vaneghi R G, Gholami R., Torabi S.R., 2014. A modified failure criterion for transversely isotropic rocks. Geoscience Frontiers 5 (2), 215-225.
  • [17] Sahouryeh E., Dyskin A.V., Germanovich L.N., 2002. Crack growth under biaxial compression. Engineering Fracture Mechanics 69 (18), 2187-2198.
  • [18] Saroglou H., 2013. Engineering behaviour of anisotropic and heterogeneous layered rocks. Proc. of Iaeg Conf. Global View of Engineering Geology and the Environment, 721-731.
  • [19] Saroglou H., Tsiambaos G., 2008. A modified Hoek-Brown failure criterion for anisotropic intact rock. International Journal of Rock Mechanics & Mining Sciences 45 (2), 223-234.
  • [20] Shi X.C., Yang X., Meng Y.F., Gao L., 2016. An anisotropic strength model for layered rocks considering planes of weakness. Rock Mechanics & Rock Engineering 49 (9), 1-10.
  • [21] Singh M., Samadhiya N.K., Kumar A., Kumar V., Singh B., 2015. A nonlinear criterion for triaxial strength of inherentny anisotropic rocks. Rock Mechanics & Rock Engineering 48 (4), 1387-1405.
  • [22] Singh M., Singh B., 2012. Modified Mohr-Coulomb criterion for non-linear triaxial and polyaxial strength of jointed rocks. International Journal of Rock Mechanics & Mining Sciences 51 (2), 43-52.
  • [23] Tan X., Konietzky H., Frühwirt T., Dan D.Q. 2015. Brazilian tests on transversely isotropic rocks: laboratory testing and numerical simulations. Rock Mechanics & Rock Engineering 48 (4), 1341-1351.
  • [24] Tien Y.M., Kuo M.C., 2001. A failure criterion for transversely isotropic rocks. International Journal of Rock Mechanics & Mining Sciences 38 (3), 399-412.
  • [25] Tien Y.M., Kuo M.C., Juang C.H., 2006. An experimental investigation of the failure mechanism of simulated transversely isotropic rocks. International Journal of Rock Mechanics & Mining Sciences 43 (8), 1163-1181.
  • [26] Tien Y.M., Tsao P.F., 2000. Preparation and mechanical properties of artificial transversely isotropic rock. International Journal of Rock Mechanics & Mining Sciences 37 (6), 1001-1012.
  • [27] Xu D.P., Feng X.T., Chen D.F., Zhang C.Q., Fan Q.X., 2017. Constitutive representation and damage degree index for the layered rock mass excavation response in underground openings. Tunnelling & Underground Space Technology 64, 133-145.
  • [28] Yasar E., 2001. Failure and failure theories for anisotropic rocks. In: Proceedings of the 17th International Mining Congress and Exhibition of Turkey IMCET. Ankara: Chamber of Mining Engineers of Turkey.
  • [29] Zhang X.M., Feng Y., Yang J.S., 2010. Experimental study on anisotropic strength properties of sandstone. Electronic Journal of Geotechnical Engineering 15, 1325-1335.
  • [30] Zhang X.P., Wong L.N.Y., 2014. Displacement field analysis for cracking processes in bonded-particle model. Bulletin of Engineering Geology & the Environment 73 (1), 13-21.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6bc35fd-7771-4767-989b-e0cbc88af7e9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.