PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical analysis and optimization of a winglet sweep angle and winglet tip chord for improvement of aircraft flight performance

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a study of the effect of winglet sweep angle and winglet tip chord of the aircraft wing on the aerodynamics performances and how to improve it are carried out, assuming Cant angle 60°, winglet height = 3.5 m, Toe angle = -5°, and Twist angle = +5°. Different sweep angles tested (-25°, -15°, 0°, +15°, +25°, +35°, and +45°) and winglet tip chord (0.25, 0.375, and 0.5 m). Four Angle of attack is presented (0°, 3°, 6°, and 9°). The aerodynamics properties of the wing were measured in terms of calculated lift to drag ratio to decide which wing has a high value of lift and lower drag. All models of a wing (eighty-four models) are drawn for 3D using the SOLIDWORKS program. Boeing 737-800 wing dimensions were used. All models of a wing were analyzed using ANSYS FLUENT. The results showed that sweep angle and winglet tip chord of the winglet by changing their configuration can improve aerodynamic performance for various attack angles. The maximum value of the lift to drag ratio was obtained with a sweep angle -15°, winglet tip chord 0.375m, and angle of attack 3°.
Czasopismo
Rocznik
Strony
art. no. 2022210
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
  • Southern Federal University, Rostov-on-Don, Russia
  • University of Technology - Iraq
  • Southern Federal University, Rostov-on-Don, Russia
  • University of Technology - Iraq
Bibliografia
  • 1. Chattot JJ, Hafez M. Theoretical and applied aerodynamics: Springer. 2015.
  • 2. Bourdin P, Gatto A, Friswell M. Aircraft control via variable cant-angle winglets. Journal of Aircraft. 2008;45(2):414-23. https://doi.org/10.2514/1.27720.
  • 3. Beechook A, Wang J, editors. Aerodynamic analysis of variable cant angle winglets for improved aircraft performance. 2013 19th International Conference on Automation and Computing; 2013.
  • 4. Faye R, Laprete R, Winter M. Blended winglets. Aero, Boeing. 2002:17.
  • 5. Croucher P. JAR professional pilot studies: Lulu. com; 2004.
  • 6. Sanders B, Eastep F, Forster E. Aerodynamic and aeroelastic characteristics of wings with conformal control surfaces for morphing aircraft. Journal of aircraft. 2003;40(1):94-9. https://doi.org/10.2514/2.3062.
  • 7. Anderson Jr JD. Fundamentals of aerodynamics: Tata McGraw-Hill Education; 2010.
  • 8. Larson G. How Things Work: Winglets. Air & Space Magazine. 2001:09-1.
  • 9. Raymer D. Aircraft Design: A Conceptual Approach, Education Series, American Institute of Aeronautics and Astronautics. Inc, Reston, VA. 2006.
  • 10. Houghton EL, Carpenter PW. Aerodynamics for engineering students: Elsevier; 2003.
  • 11. Kundu AK, Price MA, Riordan D. Conceptual Aircraft Design: An Industrial Approach: John Wiley & Sons; 2019.
  • 12. Carichner GE, Nicolai LM. Fundamentals of Aircraft and Airship Design, Volume 2-Airship Design and Case Studies: American Institute of Aeronautics and Astronautics, Inc.; 2013.
  • 13. Corda S. Introduction to aerospace engineering with a flight test perspective: John Wiley & Sons; 2017.
  • 14. Miele A. Flight mechanics: theory of flight paths: Courier Dover Publications; 2016.
  • 15. Moran J. An introduction to theoretical and computational aerodynamics: Courier Corporation; 2003.
  • 16. Barnard RH, Philpott DR. Aircraft flight: a description of the physical principles of aircraft flight: Pearson education; 2010.
  • 17. Kroo I. Nonplanar wing concepts for increased aircraft efficiency. VKI lecture series on innovative configurations and advanced concepts for future civil aircraft. 2005.
  • 18. Elham A, van Tooren MJ. Winglet multiobjective shape optimization. Aerospace Science and Technology. 2014;37:93-109.
  • 19. Marqués P, Da Ronch A. Advanced UAV Aerodynamics, Flight Stability and Control: Novel Concepts, Theory and Applications: John Wiley & Sons; 2017.
  • 20. Hallion R. NASA's Contributions to Aeronautics: National Aeronautics and Space Administration; 2010.
  • 21. McLean D. Understanding aerodynamics: arguing from the real physics: John Wiley & Sons; 2012.
  • 22. Papadopoulos C, Schmid M, Kaparos P, Misirlis D, Vlahostergios Z. Numerical Analysis and Optimization of a Winglet for a Small Horizontal Wind Turbine Blade. Chemical Engineering Transactions. 2020;81:1321-6. https://doi.org/10.3303/CET2081221.
  • 23. Vandam CP, Roskam J. Analysis of nonplanar wing-tip-mounted lifting surfaces on low-speed airplanes. 1983.
  • 24. Cancino Queirolo MA. Impact of Morphing Winglets on Aircraft Performance. 2018.
  • 25. Kazim AH, Malik AH, Ali H, Raza MU, Khan AA, Aized T, et al. CFD analysis of variable geometric angle winglets. Aircraft Engineering and Aerospace Technology. 2021;94(2):289- 301. https://doi.org/10.1108/AEAT-10-2020- 0241.
  • 26. Guerrero JE, Sanguineti M, Wittkowski K. Variable cant angle winglets for improvement of aircraft flight performance. Meccanica. 2020;55(10):1917-1947. https://doi.org/10.1007/s11012-020-01230-1.
  • 27. Saini V, Bhargav NS, Mohiddinsha Y, Senthilkumar S. Winglet Design and Analysis for Cessna 152-A Numerical Study. SAE Technical Paper; 2019. Report No.: 0148-7191.
  • 28. Guerrero J, Sanguineti M, Wittkowski K. CFD study of the impact of variable cant angle winglets on total drag reduction. Aerospace. 2018;5(4):126. https://doi.org/10.3390/aerospace5040126.
  • 29. Amiryants G, Paryshev S, Grigoriev A, editors. Aeroelastic properties of active winglets. 31st Congress of the International Council of the Aeronautical Sciences, ICAS 2018; 2018.
  • 30. Cook MV. Flight dynamics principles: a linear systems approach to aircraft stability and control: Butterworth-Heinemann; 2012.
  • 31. Wickert J, Lewis K. An introduction to mechanical engineering: Cengage learning; 2020.
  • 32. Bertin JJ, Cummings RM. Aerodynamics for engineers: Cambridge University Press; 2021.
  • 33. Kajishima T, Mohamad F. Large-eddy simulation of unsteady pitching aerofoil using a oneequation subgrid scale (SGS) model based on dynamic procedure. Journal of Mechanical Engineering (JMechE). 2021;18(1):157-73. https://doi.org/10.21491/jmeche.v18i1.15178.
  • 34. Boesser CT. The Effects of Angle-of-Attack Indication on Aircraft Control in the Event of an Airspeed Indicator Malfunction. 2013.
  • 35. Heisler H. Advanced vehicle technology: Elsevier; 2002.
  • 36. Duncan JS. Pilot’s handbook of aeronautical knowledge. US Department of Transportation Federal Aviation Administration Flight Standards Service. 2016:25-32.
  • 37. Hull DG. Fundamentals of airplane flight mechanics: Springer; 2007.
  • 38. Kundu AK. Aircraft design: Cambridge University Press; 2010.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6b53205-bb70-4a5f-bfee-6ed9da7c7aa6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.