Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
To investigate the mechanical properties of glass fiber-reinforced backfills under different proportion conditions, uniaxial compression tests were conducted on glass fiber-reinforced backfills with different slurry concentrations (65%, 68%, and 72%) and different cement–tailings ratios (1:6, 1:8, and 1:10). The effects of slurry concentration and cement–tailings ratio on the mechanical performance parameters, failure modes, and energy evolution of the glass fiber-reinforced backfills were discussed, and the effect mechanism of glass fiber on the overall mechanical properties of the backfills was revealed from a microscopic perspective. The results show that the slurry concentration and cement–tailings ratio have significant effects on the elastic modulus and uniaxial compressive strength of the glass fiber-reinforced backfill. The strength of the backfill reaches a maximum value of 2.831 MPa at a slurry concentration of 72% and a cement–tailings ratio of 1:6. The damage of the glass fiber-reinforced backfill under different proportion conditions first appeared in the central low-strength zone, and then gradually extended to the two ends, eventually leading to the overall failure. As the axial strain increases, the total and dissipated energies of glass fiber-reinforced backfill specimens increase as an exponential function, and the elastic energy increases and then decreases with the peak strain as the node. The bond between the glass fiber and the mortar matrix interface allows the fibers across both sides of the crack to form an “anchoring” effect, thus improving the overall properties of the backfill. The results of the study can promote the application and exploration of glass fiber-reinforced backfills in mine filling and provide some reference for improving the backfill performance.
Czasopismo
Rocznik
Tom
Strony
art. no. e196, 2024
Opis fizyczny
Bibliogr. 52 poz., rys., tab., wykr.
Twórcy
autor
- Solids Waste and Chemicals Management Center, Ministry of Ecology and Environment, Beijing 100029, China
- School of Civil Engineering and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
autor
- School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China
- School of Civil Engineering and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
autor
- School of Civil Engineering and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
autor
- Solids Waste and Chemicals Management Center, Ministry of Ecology and Environment, Beijing 100029, China
autor
- Solids Waste and Chemicals Management Center, Ministry of Ecology and Environment, Beijing 100029, China
autor
- Solids Waste and Chemicals Management Center, Ministry of Ecology and Environment, Beijing 100029, China
Bibliografia
- 1. Chen QS, Zhang QL, Qi CC, Fourie A, Xiao CC. Recycling phosphogypsum and construction demolition waste for cemented paste backfill and its environmental impact [J]. J Clean Prod. 2018;186:418–29.
- 2. Zhao Y, Taheri A, Karakus M, Chen ZW, Deng A. Effects of water content, water type and temperature on the rheological behaviour of slag-cement and fly ash-cement paste backfill [J]. Int J Min Sci Technol. 2020;30(3):271–8.
- 3. Zhao K, Yu X, Zhu ST, Yan YJ, Zhou Y, He ZW, Song YF, Huang M. Acoustic emission fractal characteristics and mechanical damage mechanism of cemented paste backfill prepared with tantalum niobium mine tailings [J]. Constr Build Mater. 2020;258: 119720.
- 4. Yin SH, Yan ZP, Chen X, Yan RF, Chen DP, Chen JW, Li GC. Active roof-contact: the future development of cemented paste backfill [J]. Constr Build Mater. 2023;370: 130657.
- 5. Yilmaz E, Belem T, Bussière B, Mbonimpa M, Benzaazoua M. Curing time effect on consolidation behaviour of cemented paste backfill containing different cement types and contents [J]. Constr Build Mater. 2015;75:99–111.
- 6. Roshani A, Fall M. Rheological properties of cemented paste backfill with nanosilica: link to curing temperature [J]. Cement Concr Compos. 2020;114:103785.
- 7. Wu F, Fall M. Sulphate-temperature-time interactions and the irinfluence on rheological characteristics of cemented paste backfill[J]. Powder Technol. 2024;440:119741.
- 8. Xie G, Liu L, Suo YL, Zhu MB, Yang P, Sun WJ. Study on the green disposal of industrial high salt water and its performance as activator to prepare magnesium-coal based solid waste backfill material for mine [J]. J Clean Prod. 2024;452:141933.
- 9. Chen X, Shi XZ, Zhou J, Li EM, Qiu PY, Gou YG. High strain rate compressive strength behavior of cemented paste backfill using split Hopkinson pressure bar [J]. Int J Min Sci Technol.2021;31(3):387–99.
- 10. He ZW, Zhao K, Yan YJ, Ning FJ, Zhou Y, Song YF. Mechanical response and acoustic emission characteristics of cement paste backfill and rock combination [J]. Constr Building Mater. 2021;288:123119.
- 11. Zhao K, Song YF, Yu X, Zhou Y, Yan YJ, Wang J. Study on early mechanical properties and damage constitutive model of cemented tailings backfill under different fibers [J]. Chin J Rock Mech Eng. 2022;41(02):282–91.
- 12. Zhao K, Yang J, Yu X, Yan YJ, Zhao KQ, Lai YM, Wu J. Damage evolution process of fiber-reinforced backfill based on acoustic emission three-dimensional localization [J]. Compos Struct. 2023;309:116723.
- 13. Qiu JP, Xiang JC, Zhang WQ, Zhao YL, Sun XG, Gu XW. Effect of microbial-cemented on mechanical properties of iron tailings backfill and its mechanism analysis [J]. Constr Build Mater. 2022;318:126001.
- 14. Cheng BC, Liu RT, Li XH, Castillo EDR, Chen MJ, Li SC. Effects of fly and coal bottom ash ratio on backfill material performance[J]. Constr Build Mater. 2022;319:125831.
- 15. Yu KP, Ma LQ, Huo BB, Ngo I, Wu YW, Zhai JT. Study on the fluidity and mechanical properties of multi-source coal-based solid waste (MCSW) filling material [J]. J Market Res.2024;28:2924–34.
- 16. Li P, Cai MF. Challenges and new insights for exploitation of deep underground metal mineral resources [J]. Transactions Nonferrous Metals Society China. 2021;31(11):3478–505.
- 17. Chen DH, Yuan YQ, Ma L. Deformation and failure characteristics and control technology of surrounding rocks in deephigh-horizontal stress rock roadways in the Wanbei mining area[J]. Front Earth Sci. 2022;10:886221.
- 18. Li Y, Fu JX, Wang K, He ZQ. Influence of shell ash on pore structure and mechanical characteristics of cemented tailings backfill[J]. Constr Build Mater. 2024;411:134473.
- 19. Le LA, Nguyen GD, Bui HH, Sheikh AH, Kotousovc A. Incorporation of micro-cracking and fibre bridging mechanisms in constitutive modelling of fibre reinforced concrete [J]. J Mech Phys Solids. 2019;133:103732.
- 20. Vigneshwaran GV, Shanmugavel BP, Paskaramoorthy R, Harish S. Tensile, impact, and modeI behaviour of glass fiber-reinforced polymer composite modified by graphene nanoplatelets[J]. Archives Civil Mechanical Eng. 2020;20(3):1–15.
- 21. Zaid O, Martínez-García R, Abadel AA, Fraile-FernándezFJ, Alshaikh IMH, Palencia-Coto C. To determine the performance of meta kaolin-based fiber-reinforced geopolymer concrete with recycled aggregates [J]. Archives Civil Mech Eng. 2022;22(3):1–14.
- 22. Wu HS, Zang ZS, Deng SY, Shen AQ, Cai YX, Ren GP, Pan HM. Recent developments in pullout behaviors and tensile properties of ultra-high-performance concrete reinforced with steel fiber [J].Archives Civil Mech Eng. 2023;23(3):216.
- 23. Naser MZ, Hawileh RA, Abdalla JA. Fiber-reinforced polymer composites in strengthening reinforced concrete structures: a critical review [J]. Eng Struct. 2019;198:109542.
- 24. Kazemi F, Shafighfard T, Yoo DY. Data-driven modeling of mechanical properties of fiber-reinforced concrete: acritical review [J]. Archives Computational Methods Eng. 2024;31:2049–78.
- 25. Zhang H, Jin CJ, Wang L, Pan LY, Liu XY, Ji SS. Research on dynamic splitting damage characteristics and constitutive model of basalt fiber reinforced concrete based on acoustic emission [J].Constr Build Mater. 2022;319:126018.
- 26. Yuan Z, Jia YM. Mechanical properties and microstructure of glass fiber and polypropylene fiber reinforced concrete: an experimental study [J]. Constr Build Mater. 2021;266:121048.
- 27. Ahmad J, Zaid O, Pérez CLC, Martínez-García R, López-GayarreF. Experimental research on mechanical and permeability properties of nylon fiber reinforced recycled aggregate concrete withmineral admixture [J]. Appl Sci. 2022;12(2):554.
- 28. Jamshaid H, Mishra RK, Raza A, Hussain U, Rahman ML, Nazari S, Chandan V, Muller M, Choteborsky R. Natural cellulosic fiber reinforced concrete: influence of fiber type and loading percentageon mechanical and water absorption performance [J]. Materials. 2022;15(3):874.
- 29. Emamjomeh H, Behfarnia K, Raji A, Almohammad-albakkar M. Influence of PVA and PP fibers addition on the durability and mechanical properties of engineered cementitious composites blended with silica fume and zeolite [J]. Res Eng Struct Mater. 2023;9(2):457–73.
- 30. Qiu HF, Zhang FS, Liu L, Huan C, Hou DZ, Kang W. Experimental study on acoustic emission characteristics of cemented rock-tailings backfill [J]. Constr Build Mater. 2022;315:125278.
- 31. Hou YQ, Yang K, Yin SH, Yu X, Wang LM, Yang XB. Enhanc-ing the physical properties of cemented ultrafine tailings backfill (CUTB) with fiber and rice husk ash: Performance, mechanisms, and optimization [J]. J Market Res. 2024;29:4418–32.
- 32. Zhao K, Huang M, Yan YJ, Wan WL, Ning FJ, Zhou Y, He ZW. Mechanical properties and synergistic deformation characteristics of tailings cemented filling assembled material body with different cement-tailings ratios [J]. Chin J Rock Mech Eng. 2021;40(S1):2781–9.
- 33. Zhao K, He ZW, Yang J, Yan YJ, Yu X, Zhou Y, Zhang XW, Wang JQ. Investigation of failure mechanism of cement-fiber-tailings matrix composites using digital image correlation and acoustic emission [J]. Constr Build Mater. 2022;335:127513.
- 34. Chen X, Shi XZ, Zhou J, Chen QS, Li EM, Du XH. Compressive behavior and microstructural properties of tailings polypropylene fibre-reinforced cemented paste backfill [J]. Constr Build Mater. 2018;190:211–21.
- 35. Xue GL, Yilmaz E, Song WD, Cao S. Fiber length effect on strength properties of polypropylene fiber reinforced cemented tailings backfill specimens with different sizes [J]. Constr Build Mater. 2020;241C:118113.
- 36. Zhou N, Du EB, Zhang JX, Zhu CL, Zhou HQ. Mechanical properties improvement of sand-based cemented backfill body by adding glass fibers of different lengths and ratios [J]. Constr Build Mater. 2021;280:122408.
- 37. Yin SH, Hou YQ, Chen X, Zhang MZ, Du HH, Gao C. Mechanical behavior, failure pattern and damage evolution of fiber-reinforced cemented sulfur tailings backfill under uniaxial loading [J].Constr Build Mater. 2022;332:127248.
- 38. Sun W, Gao T, Zhao JG, Cheng HY. Research on fracture behavior and reinforcement mechanism of fiber-reinforced locally layered backfill: experiments and models[J]. Constr Build Mater. 2023;366:130186.
- 39. Li J, Cao S, Yilmaz E. Reinforcing effects of polypropylene on energy absorption and fracturing of cement-based tailings backfill under impact loading [J]. Int J Miner Metall Mater. 2024;31(4):650–64.
- 40. Huang XQ, Sun ZH, Zhao YH, Wang HJ, X F, Hou HB. Zero carbon inertization processes of hazardous mine tailings: Mineral physicochemical properties transformation mechanism and long-term stability [J]. J Hazard Mater. 2024;469:133882. https://doi.org/10.1016/j.jhazmat.2024.133882.
- 41. Zhao K, Ma C, Yang J, Wu J, Yan YJ, Lai YM, Ao WQ, Tian Y. Pore fractal characteristics of fiber-reinforced back fillbased on nuclear magnetic resonance [J]. Powder Technol. 2023;426:118678.
- 42. Guo ZB, Qiu JP, Kirichek A, Zhou H, Liu C, Yang L. Recycling waste tyre polymer for production of fibre reinforced cemented tailings backfill in green mining [J]. Sci Total Environ. 2024;908:168320.
- 43. Hou YQ, Yang K, Yin SH, Chen X, Zhang LF. Experimental study on mechanical properties, microstructure and ratio parameter optimization of mixed fiber-reinforced rubber cemented coar seaggregate backfill [J]. Constr Build Mater. 2023;409:134105.
- 44. Almohammad-Albakkar M, Behfarnia K. Effects of the combined usage of micro and nano-silica on the drying shrinkage and compressive strength of the self-compacting concrete [J]. J Sustain Cem-Based Mater. 2021;10(2):92–110.
- 45. Xie HX, Li XH, Shan CH, Xia Z, Yu LQ. Study on the damage mechanism and energy evolution characteristics of water-bearing coal samples under cyclic loading [J]. Rock Mech Rock Eng. 2023;56(2):1367–85.
- 46. Zhang C, Fu JX, Song WD, Kang MC, Li T, Wang NW. Analysis on mechanical behavior and failure characteristics of layered cemented paste backfill (LCPB) under triaxial compression [J].Constr Build Mater. 2022;324:126631.
- 47. Tan YL, Gu QH, Ning JG, Liu XS, Jia ZC, Huang DM. Uniaxial compression behavior of cement mortar and its damage-constitutive model based on energy theory [J]. Materials. 2019;12(8):1309.
- 48. Hou YQ, Yin SH, Chen X, Zhang MZ, Yang SX. Study on characteristic stress and energy damage evolution mechanism of cemented tailings backfill under uniaxial compression [J]. Constr Build Mater. 2021;301:124333.
- 49. Xu WB, Pang WD, Ding ML. Experiment on evolution of microstructures and long-term strength model of cemented backfill mass[J]. J Central South Univ: Sci Technol. 2015;46(6):2333–41.
- 50. Zhao K, Wu J, Yan YJ, Zhou Y, Yang J, He ZW. Multi-scale characteristics of crack evolution of cemented tailings backfill [J].Chin J Rock Mech Eng. 2022;41(08):1626–36.
- 51. Tang CS, Shi B, Gao W, Chen FJ, Cai Y. Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil [J]. Geotext Geomembr. 2007;25(3):194–202.
- 52. Hou YQ, Yin SH, Zhao GL, Zhang PQ, Yang SX, ZhangMZ, Liu HB. Study on the mechanical and flow properties ofpolypropylene fiber reinforced cemented tailings backfill [J].Mater Rep. 2021;35(19):19030–5.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6b3e440-1af6-4b35-be47-35615df0f551
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.