Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents the results of an analysis of the influence of prior austenite grain (PAGS) size on the strength and ductility of Hardox Extreme steel, with particular emphasis on impact load resistance and abrasion resistance under loose abrasive conditions. According to the manufacturer, Hardox Extreme steel in its delivered state is characterized by a minimum tensile strength of 2000 MPa and a hardness exceeding 60 HRC. To conduct the analysis, Hardox Extreme steel underwent heat treatment, including austenitization at temperatures ranging from 850 to 1200 °C. The mechanical property tests were supplemented with microscopic analysis using stereoscopic, light (LM), and scanning electron microscopy (SEM) to evaluate microstructural properties. Fractographic studies were also carried out to identify the fracture characteristics observed during impact tests. Additionally, surface analyses after abrasion tests were performed to determine the micromechanisms of wear. Quantitative metallography techniques and statistical tools were employed to evaluate the prior austenite grain size and its distribution across various austenitization temperatures. The final section discusses the results in relation to existing literature and presents scientific and practical conclusions.
Wydawca
Rocznik
Tom
Strony
214–236
Opis fizyczny
Bibliogr. 45 poz., fig., tab.
Twórcy
autor
- Department of Vehicle Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, ul. Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
- Department of Vehicle Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, ul. Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
- Department of Vehicle Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, ul. Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
- 1. Konat Ł. Structural aspects of execution and thermal treatment of welded joints of Hardox Extreme steel. Metals (Basel) 2019; 9: 915. https://doi.org/10.3390/met9090915.
- 2. Białobrzeska B, Jasiński R, Konat L, Szczepański L. Analysis of the properties of Hardox Extreme steel and possibilities of its applications in machinery. Metals (Basel) 2021; 11: 162. https://doi.org/10.3390/met11010162.
- 3. Zemlik M, Konat Ł, Leśny K, Jamroziak K. Comparison of abrasive wear resistance of Hardox steel and Hadfield cast steel. Applied Sciences 2024; 14: 11141. https://doi.org/10.3390/APP142311141.
- 4. Zemlik Martyna, Konat Łukasz, Białobrzeska Beata. Analysis of the possibilities to increase abrasion resistance of welded joints of Hardox Extreme steel. Tribol Int 2025; 201. https://doi.org/10.1016/j.triboint.2024.110271.
- 5. Konat Ł, Pękalski G. Overview of materials testing of brown-coal mining machines (years 1985–2017). In: Sokolski M, editor. Mining Machines and Earth-Moving Equipment, Cham: Springer 2020; 21–58.
- 6. Konat Ł, Napiórkowski J. The effect of the method and parameters of the heat treatment on abrasive wear resistance of 38GSA steel. Quarterly Tribologia 2019; 2: 61–9. https://doi.org/10.5604/01.3001.0013.5435.
- 7. Ojala N, Valtonen K, Heino V, Kallio M, Aaltonen J, Siitonen P, et al. Effects of composition and microstructure on the abrasive wear performance of quenched wear resistant steels. Wear 2014; 317: 225–32. https://doi.org/10.1016/J.WEAR.2014.06.003.
- 8. Mondal J, Das K, Das S. An investigation of mechanical property and sliding wear behaviour of 400Hv grade martensitic steels. Wear 2020; 458–459: 203436. https://doi.org/10.1016/j.wear.2020.203436.
- 9. Białobrzeska B, Konat Ł. Comparative analysis of abrasive-wear resistance of Brinar and Hardox steels. Tribologia 2017; 272: 7–16. https://doi.org/10.5604/01.3001.0010.6261.
- 10. Wyrzykowski JW, Pleszakow E, Sieniawski J. Deformation and cracking of metals. Warsaw: Publishing House “WNT”; 1999.
- 11. Lindroos M, Valtonen K, Kemppainen A, Laukkanen A, Holmberg K, Kuokkala V-T. Wear behavior and work hardening of high strength steels in high stress abrasion. Wear 2015; 322–323: 32–40. https://doi.org/10.1016/j.wear.2014.10.018.
- 12. Ratia V, Rojacz H, Terva J, Valtonen K, Badisch E, Kuokkala V-T. Effect of multiple impacts on the deformation of wear-resistant steels. Tribol Lett 2015; 57: 15. https://doi.org/10.1007/s11249-014-0460-7.
- 13. Valtonen K, Ojala N, Haiko O, Kuokkala V-T. Comparison of various high-stress wear conditions and wear performance of martensitic steels. Wear 2019; 426–427: 3–13. https://doi.org/10.1016/j.wear.2018.12.006.
- 14. Morito S, Tanaka H, Konishi R, Furuhara T, Maki T. The morphology and crystallography of lath martensite in Fe-C alloys. Acta Mater 2003; 51: 1789–99. https://doi.org/10.1016/S1359-6454(02)00577-3.
- 15. Wang C, Wang M, Shi J, Hui W, Dong H. Effect of microstructure refinement on the strength and toughness of low alloy martensitic steel. J Mater Sci Technol 2007; 23: 659–64.
- 16. Prawoto Y, Jasmawati N, Sumeru K. Effect of prior austenite grain size on the morphology and mechanical properties of martensite in medium carbon steel. J Mater Sci Technol 2012; 28: 461–6. https://doi.org/10.1016/S1005-0302(12)60083-8.
- 17. Morris JW. The influence of grain size on the mechanical properties of steel. In: Takaki S, Maki T, editors. In Proceedings of the International Symposium on Ultrafine Grained Steels, Fukuoka, Japan: Iron and Steel Institute of Japan 2001; 34–41. https://doi.org/10.2172/861397.
- 18. Haiko O, Javaheri V, Valtonen K, Kaijalainen A, Hannula J, Kömi J. Effect of prior austenite grain size on the abrasive wear resistance of ultra-high strength martensitic steels. Wear 2020; 454–455: 203336. https://doi.org/10.1016/j.wear.2020.203336.
- 19. Hidalgo J, Santofimia MJ. Effect of prior austenite grain size refinement by thermal cycling on the microstructural features of as-quenched lath martensite. Metall Mater Trans A Phys Metall Mater Sci 2016; 47: 5288–301. https://doi.org/10.1007/S11661-016-3525-4/FIGURES/12.
- 20. Maki T. Morphology and substructure of martensite in steels. Phase Transformations in Steels 2012; 34–58 236 https://doi.org/10.1533/9780857096111.1.34.
- 21. Swarr T, Krauss G. The effect of structure on the deformation of as-quenched and tempered martensite in an Fe-0.2 pct C alloy. Metallurgical Transactions A 1976; 7: 41–8. https://doi.org/10.1007/BF02644037.
- 22. Wang C, Wang M, Shi J, Hui W, Dong H. Effect of microstructural refinement on the toughness of low carbon martensitic steel. Scr Mater 2008; 58: 492–5. https://doi.org/10.1016/j.scriptamat.2007.10.053.
- 23. Białobrzeska B, Konat Ł, Jasiński R. The influence of austenite grain size on the mechanical properties of low-alloy steel with boron. Metals (Basel) 2017; 7. https://doi.org/10.3390/met7010026.
- 24. Dobrzański LA. Podstawy nauki o materiałach i metaloznawstwo. Warszawa: Wydawnictwa Naukowo-Techniczne; 2003.
- 25. Burakowski T, Wierzchoń T. Inżynieria powierzchni metali. Warszawa: Wydawnictwa Naukowo-Techniczne; 1995.
- 26. Pawlak K, Białobrzeska B, Konat Ł. The influence of austenitizing temperature on prior austenite grain size and resistance to abrasion wear of selected low-alloy boron steel. Archives of Civil and Mechanical Engineering 2016; 16. https://doi.org/10.1016/j.acme.2016.07.003.
- 27. Sundström A, Rendón J, Olsson M. Wear behaviour of some low alloyed steels under combined impact/abrasion contact conditions. Wear 2001; 250: 744–54. https://doi.org/10.1016/S0043-1648(01)00712-8.
- 28. Kömi J, Karjalainen P, Porter D. Direct-quenched structural steels. In: Colás R, Totten GE, editors. Encyclopedia of iron, steel their alloy, Boca Raton: CRC Press 2016; 1109–25. https://doi.org/10.1081/E-EISA-120049737.
- 29. Hanamura T, Torizuka S, Tamura S, Enokida S, Takechi H. Effect of austenite grain size on transformation behavior, microstructure and mechanical properties of 0.1C–5Mn martensitic steel. Institute of Japan International 2013; 53: 2218–25. https://doi.org/10.2355/ISIJINTERNATIONAL.53.2218.
- 30. Lan HF, Du LX, Li Q, Qiu CL, Li JP, Misra RDK. Improvement of strength-toughness combination in austempered low carbon bainitic steel: The key role of refining prior austenite grain size. J Alloys Compd 2017; 710: 702–10. https://doi.org/10.1016/J.JALLCOM.2017.03.024.
- 31. Chatterjee S, Bhadeshia HKDH. TRIP-assisted steels: cracking of high-carbon martensite. Materials Science and Technology 2006; 22: 645–9. https://doi.org/10.1179/174328406X86182.
- 32. Zemlik M, Białobrzeska B, Stachowicz M, Hanszke J. The influence of grain size on the abrasive wear resistance of Hardox 500 steel. Applied Sciences 2024; 14: 11490. https://doi.org/10.3390/APP142411490.
- 33. Mukhamedov AA. Strength and wear resistance in relation to the austenite grain size and fine structure of the steel. Metal Science and Heat Treatment 1968; 10: 526–8. https://doi.org/10.1007/BF00654357.
- 34. Białobrzeska B. The influence of boron on the resistance to abrasion of quenched low-alloy steels. Wear 2022; 500–501: 204345. https://doi.org/10.1016/j.wear.2022.204345.
- 35. Ligier K, Zemlik M, Lemecha M, Konat Ł, Napiórkowski J. Analysis of wear properties of Hardox steels in different soil conditions. Materials 2022; 15: 7622. https://doi.org/10.3390/ma15217622.
- 36. Dziubek M, Rutkowska-Gorczyca M, Dudziński W, Grygier D. Investigation into changes of microstructure and abrasive wear resistance occurring in high manganese steel X120Mn12 during isothermal annealing and re-austenitisation process. Materials 2022; 15: 2622. https://doi.org/10.3390/ma15072622.
- 37. Kocańda Stanisław. Fatigue Failure of Metals. Warsaw: Publishing House “WNT”; 1978.
- 38. Maciejny A. Brittleness of Metals. Katowice: Publishing House “Śląsk”; 1973.
- 39. Li X, Lu G, Wang Q, Zhao J, Xie Z, Misra RDK, et al. The effects of prior austenite grain refinement on strength and toughness of high-strength low-alloy steel. Metals (Basel) 2021; 12: 28. https://doi.org/10.3390/MET12010028.
- 40. Li X, Lu G, Wang Q, Zhao J, Xie Z, Misra RDK, et al. The effects of prior austenite grain refinement on strength and toughness of high-strength low-alloy steel. Metals (Basel) 2021; 12: 28. https://doi.org/10.3390/MET12010028.
- 41. Simm T, Sun L, McAdam S, Hill P, Rawson M, Perkins K. The influence of lath, block and prior austenite grain (pag) size on the tensile, creep and fatigue properties of novel maraging steel. Materials 2017; 10: 730. https://doi.org/10.3390/MA10070730.
- 42. Abbaszadeh P, Kheirandish S, Saghafian H, Goodarzy M hossein. Effect of austenitizing temperature on mechanical properties of the mixed bainite - martensite microstructure in CrMoV steel. Materials Research 2017; 21: e20170469. https://doi.org/10.1590/1980-5373-MR-2017-0469.
- 43. Wang J, Enloe C, Singh J, Horvath C. Effect of prior austenite grain size on impact toughness of press hardened steel. SAE International Journal of Materials and Manufacturing 2016; 9: 488–93.
- 44. Chen J, Zhang W na, Liu Z yu, Wang G dong. The role of retained austenite on the mechanical properties of a low carbon 3Mn-1.5Ni steel. Metall Mater Trans A Phys Metall Mater Sci 2017; 48: 5849–59. https://doi.org/10.1007/S11661-017-4362-9/METRICS.
- 45. Chintha AR. Metallurgical aspects of steels designed to resist abrasion, and impact-abrasion wear. Materials Science and Technology 2019; 35: 1133–48. https://doi.org/10.1080/02670836.2019.1615669.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6b2ecfb-7fb9-42df-bf83-8333056af779
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.