PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Inhaled drug airflow patterns and particles deposition in the paediatric respiratory tract

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
: The effectiveness of inhaled drugs is strictly related to areas reachable by drug particles. Unless particles reach the desired part of the bronchial tree, their influence might not meet the expectations. Consequently, the disease progress might not be stopped or even slowed down. Therefore, the primary objective of this research was to analyze the airflow patterns and particle deposition of a standard inhaled drug using computational fluid dynamics. Methods: The study was devoted to the analysis of the particle diameter influence on their deposition areas within the entire respiratory tract. Two patient-specific respiratory tract models, for 6 and 12-year-old patients, were reconstructed based on the computed tomography examinations. Numerical analyses were carried out as stationary ones with the constant inflow of the particles of various diameters (within the range of 1–50 μm). It was proven that depending on the particle size, their deposition within the respiratory tract varies significantly. Results: The vast majority of the particles with diameters over 20 μm is gathered on the walls of the throat, whereas particles of diameters 5–15 μm are accumulated mainly on the trachea walls, leaving the alveoli insufficiently supplied with the drug particles. Conclusions: The inhaled drug size cannot be treated as negligible factor during the drug spraying. An improper distribution of the particles might not inhibit the symptoms of the asthma. Numerical simulations may improve drugs selection and visualize their distribution along the airways, which might accelerate asthma treatment personalization.
Rocznik
Strony
101--110
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
  • Institute of Turbomachinery, Lodz University of Technology, Łódź, Poland
  • Institute of Turbomachinery, Lodz University of Technology, Łódź, Poland
  • Institute of Turbomachinery, Lodz University of Technology, ul. Wólczańska 219/223, 90-924, Łódź, Poland
  • Institute of Turbomachinery, Lodz University of Technology, Łódź, Poland
autor
  • Institute of Turbomachinery, Lodz University of Technology, Łódź, Poland
  • Department of Gastroenterology, Allergology and Pediatrics, Polish Mother’s Memorial Hospital Research Institute, Łódź, Poland
  • Department of Gastroenterology, Allergology and Pediatrics, Polish Mother’s Memorial Hospital Research Institute, Łódź, Poland
  • Department of Gastroenterology, Allergology and Pediatrics, Polish Mother’s Memorial Hospital Research Institute, Łódź, Poland
Bibliografia
  • [1] AMIRAV I., NEWHOUSE M.T., Aerosol therapy in infants and toddlers: past, present and future, Expert Rev. Resp. Med., 2008, 2 (5), 597–605,
  • [2] ANSYS. (2017). ANSYS CFX – theory guide 18.2.
  • [3] BATCHELOR H.K., MARRIOTT J.F., Formulations for children: problems and solutions, Brit. J. Clin. Pharmaco, 2015, 79 (3), 405–418.
  • [4] DALBY R., SUMAN J., Inhalation therapy: technological milestones in asthma treatment, Adv. Drug. Deliver. Rev., 2003, 55 (7), 779–791.
  • [5] DAS P., NOF E., AMIRAV I., KASSINOS S.C., SZNITMAN J., Targeting inhaled aerosol delivery to upper airways in children: Insight from computational fluid dynamics (CFD), PLOS ONE, 2018, 13 (11), e0207711.
  • [6] FINK J.B., Delivery of inhaled drugs for infants and small children: a commentary on present and future needs, Clin. Ther., 2012, 34 (11), S36–S45.
  • [7] FLEMING S., THOMPSON M., STEVENS R., HENEGHAN C., PLÜDDEMANN A., MACONOCHIE I., MANT D., Normal ranges of heart rate and respiratory rate in children from birth to 18 years of age: a systematic review of observational studies, The Lancet, 2011, 377(9770), 1011–1018.
  • [8] GIZIŃSKA M., KONARSKA A., RĄGLEWSKA P., RUTKOWSKI R., STRABURZYŃSKA-LUPA A., Factors affecting efficacy of the aerosol therapy in pediatric patients, Pediatr. Med. Rodz., 2012, 8 (2), 101–106 (in Polish).
  • [9] Global Initiative for Asthma, Pocket Guide for Asthma Management and Prevention (for Adults and Children Older Than 5 Years): A Pocket Guide for Health Professionals, Global Initiative for Asthma, 2016.
  • [10] GRISCOM N.T., WOHL M.E., Dimensions of the growing trachea related to age and gender, Am. J. Roentgenol., 1986, 146 (2), 233–237.
  • [11] HOFMANN W., Mathematical model for the postnatal growth of the human lung, Resp. Physiol., 1982, 49 (1), 115–129.
  • [12] JODKO D., OBIDOWSKI D., REOROWICZ P., JÓŹWIK K., Numerical investigations of the unsteady blood flow in the end- -to-side arteriovenous fistula for hemodialysis, Acta Bioeng. Biomech., 2016, 18 (4).
  • [13] KENNEDY M.P., OSTROWSKI L.E., Primary ciliary dyskinesia and upper airway diseases, Curr. Allergy Asthm. R., 2006, 6 (6), 513–517.
  • [14] KULUS M., KRENKE K., Children’s pulmonology, PZWL Wydawnictwo Lekarskie, Warszawa 2018.
  • [15] LAUBE B.L., JANSSENS H.M., DE JONGH F.H., DEVADASON S.G., DHAND R., DIOT P., CHRYSTYN H., What the pulmonary specialist should know about the new inhalation therapies, Eur. Respir. J., 2011, 37 (6), 1308–1417.
  • [16] LIU Z., LI A., XU X., GAO R., Computational fluid dynamics simulation of airflow patterns and particle deposition characteristics in children upper respiratory tracts, Eng. Appl. Comp. Fluid, 2012, 6 (4), 556–571.
  • [17] LUO H.Y., LIU Y., Particle deposition in a CT-scanned human lung airway, J. Biomech., 2009, 42 (12), 1869– 1876.
  • [18] MENTER F.R., Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J., 1994, 32 (8), 1598–1605.
  • [19] PEDERSEN S., DUBUS J.C., CROMPTON G., The ADMIT series – issues in inhalation therapy. 5) Inhaler selection in children with asthma, Prim. Care Resp. J., 2010, 19 (3), 209–216.
  • [20] RAHIMI-GORJI M., GORJI T.B., GORJI-BANDPY M., Details of regional particle deposition and airflow structures in a realistic model of human tracheobronchial airways: two-phase flow simulation, Comput. Biol. Med., 2016, 74, 1–17.
  • [21] RAHIMI-GORJI M., POURMEHRAN O., GORJI-BANDPY M., GORJI T.B., CFD simulation of airflow behavior and particle transport and deposition in different breathing conditions through the realistic model of human airways, J. Mol. Liq., 2015, 209, 121–133.
  • [22] REOROWICZ P., OBIDOWSKI D., KŁOSIŃSKI P., SZUBERT W., STEFAŃCZYK L., JÓŹWIK K., Numerical simulations of the blood flow in the patient-specific arterial cerebral circle region, J. Biomech., 2014, 47 (7), 1642–1651.
  • [23] SCHUEEPP K.G., DEVADASON S.G., ROLLER C., MINOCCHIERI S., MOELLER A., HAMACHER J., WILDHABER J.H., Aerosol delivery of nebulised budesonide in young children with asthma, Resp. Med., 2009, 103 (11), 1738–1745.
  • [24] SCHÜEPP K.G., STRAUB D., MÖLLER A., WILDHABER J.H., Deposition of aerosols in infants and children, Journal of Aerosol Medicine, 2004, 17 (2), 153–156.
  • [25] TENA A.F., CLARÀ P.C., Deposition of inhaled particles in the lungs, Arch. Bronconeumol. (English Edition), 2012, 48 (7), 240–246.
  • [26] TYFA Z., OBIDOWSKI D., REOROWICZ P., STEFAŃCZYK L., FORTUNIAK J., JÓŹWIK K., Numerical simulations of the pulsatile blood flow in the different types of arterial fenestrations: Comparable analysis of multiple vascular geometries, Biocybern. Biomed. Eng., 2018, 38 (2), 228–242.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6af4296-052f-4061-a7f9-4822b173f800
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.