PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Late Carboniferous–Early Permian climate change on the sedimentary evolution : a case study of the lacustrine Lower Anthracosia Shales (Intra-Sudetic Basin, SW Poland)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Anthracosia Shales are lacustrine deposits within the volcano-sedimentary Pennsylvanian– Lower Permian succession of the Intra-Sudetic Basin. Core from the Rybnica Leśna PIG 1 borehole, which penetrated the Lower Anthracosia Shales, was analysed to explore the influence of climate on the evolution of the palaeolake, as distinct from tectonic and volcanic forcing. This reconstruction was made using mineralogical and geochemical proxies (elemental and mineralogical composition, TOC values, presence of framboidal pyrite and siderite). Based on the results, three chemically different intervals previously introduced by Wójcik-Tabol et al. (2021) are described. They represent the following stages of lake evolution: transgression (interval I), open lake (interval IIA and IIB), and termination (interval IIC and III). The initial stage of the lake (interval I) was probably related to a rise in humidity in the Late Pennsylvanian, linked to a southern Gondwana interglacial episode. Interval IIA represents the deepest facies of the Anthracosia Basin, where lake-floor anoxia prevailed. This stage was followed by a gradual lake-level fall recorded in interval IIB, with documented seasonality in humid and warm conditions. Interval IIC represents a stepwise lake regression attributed to aridification, as indicated by proxies showing a decrease in chemical weathering. Turbiditic sandy laminae in interval III reflect the terminal stage of lake infill.
Rocznik
Strony
art. no. 5
Opis fizyczny
Bibliogr. 82 poz., fot., rys., tab., wykr.
Twórcy
  • Jagiellonian University, Doctoral School of Exact and Natural Sciences, Prof. St. Łojasiewicza 11, 30-348, Kraków, Poland
  • Jagiellonian University in Kraków, Institute of Geological Sciences, Gronostajowa 3a, 30-387 Kraków, Poland
  • Jagiellonian University, Institute of Geological Sciences, Gronostajowa 3a, 30-387 Kraków
  • Polish Geological Institute - National Research Institute - Lower Silesian Branch, Jaworowa 19, 53-122 Wrocław
Bibliografia
  • 1. Algeo, T.J., Maynard, J.B., 2004. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chemical Geology, 206: 289-318. https://doi.org/10.1016/j.chemgeo.2003.12.009
  • 2. Arnaud, F., Revillon, S., Debret, M., Revel, M., Chapron, E., Jacob, J., Giguet-Covex, C., Poulenard, J., Magny, M., 2012. Lake Bourget regional erosion patterns reconstruction reveals Holocene NW European Alps soil evolution and paleohydrology. Quaternary Science Reviews, 51: 81-92. https://doi.org/10.1016/j.quascirev.2012.07.025
  • 3. Awdankiewicz, M., 1999. Volcanism in a late Variscan intramontane trough: Carboniferous and Permian volcanic centres of the Intra-Sudetic Basin, SW Poland. Geologia Sudetica, 32: 13-47.
  • 4. Awdankiewicz, M., 2022. Polyphase Permo-Carboniferous magmatism adjacent to the Intra-Sudetic Fault: constraints from U-Pb SHRIMP zircon study of felsic subvolcanic intrusions in the Intra-Sudetic Basin, SW Poland. International Journal of Earth Sciences, 111: 2199-2224. https://doi.org/10.1007/s00531-022-02232-y
  • 5. Awdankiewicz, M., Kurowski, L., Mastalerz, K., Raczyński, P., 2003. The Intra-Sudetic Basin - a record of sedimentary and volcanic processes in late - to post-orogenic tectonic setting. GeoLines, 16: 165-183.
  • 6. Bahrig, B., 1989. Stable isotope composition of siderite as an indicator of the paleoenvironmental history of oil shale lakes. Palaeogeography, Palaeoclimatology, Paleoecology, 70: 139-151. https://doi.org/10.1016/0031-0182(89)90085-0
  • 7. Bassetti, M.A., Berne, S., Sicre, M.A., Dennielou, B., Alonso, Y., Buscail, R., Jalali, B., Hebert, B., Menniti, C., 2016. Holocene hydrological changes in the Rhone River (NW Mediterranean) as recorded in the marine mud belt. Climate of the Past, 12: 1539-1553. https://doi.org/10.5194/cp-12-1539-2016
  • 8. Berg, W.F.M., 1938. Crystal growth from solutions. Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences, 164: 79-95.
  • 9. Berner, Z.A., Puchelt, H., Noeltner, T., Kramar, U.T.Z., 2013. Pyrite geochemistry in the Toarcian Posidonia Shale of south-west Germany: evidence for contrasting trace-element patterns of diagenetic and syngenetic pyrites. Sedimentology, 60: 548-573. https://doi.org/10.1111/j.1365-3091.2012.01350.x
  • 10. Bond, D.P., Wignall, P.B., 2010. Pyrite framboid study of marine Permian-Triassic boundary sections: a complex anoxic event and its relationship to contemporaneous mass extinction. GSA Bulletin, 122: 1265-1279. https://doi.org/10.1130/B3004
  • 11. Bossowski, A., Ihnatowicz, A., 1994. Palaeogeography of the uppermost Carboniferous and lowermost Permian deposits in the NE part of the Intra-Sudetic Depression. Geological Quarterly, 38 (4): 709-726.
  • 12. Bossowski, A., Ihnatowicz, A., 2006. Geological At las of the Lower Silesian Coal Basin. Państwowy Instytut Geologiczny, Warszawa.
  • 13. Calvert, S.E., Pedersen, T.F., 1993. Geochemistry of recent oxic and anoxic marine sediments: implications for the geological record. Marine Geology, 113: 67-88. https://doi.org/10.1016/0025-3227(93)90150-T
  • 14. Calvert, S.E., Pedersen, T.F., 1996. Sedimentary geochemistry of manganese; implications for the environment of formation of manganiferous black shales. Economic Geology, 91: 36-47. https://doi.org/10.2113/gsecongeo.91.1.36
  • 15. Canfield, D.E., Thamdrup, B.O., 2009. Towards a consistent classification scheme for geochemical environments, or, why we wish the term ‘suboxic’ would go away. Geobiology, 7: 385-392. https://doi.org/10.1111/j.1472-4669.2009.00214.x
  • 16. Clift, P.D., Wan, S., Blusztajn, J., 2014. Reconstructing chemical weathering, physical erosion and monsoon intensity since 25 Ma in the northern South China Sea: a review of competing proxies. Earth-Science Reviews, 130: 86-102. https://doi.org/10.1016/j.earscirev.2014.01.002
  • 17. Crowley, T.J., Baum, S.K., 1992. Modeling late Paleozoic glaciation. Geology, 20: 507-510. https://doi.org/10.1130/0091-7613(1992)020<0507:MLPG>2.3.CO;2
  • 18. Dahl, T.W., Hammarlund, E.U., Anbar, A.D., Bond, D.P., Gill, B.C., Gordon, G.W., Knoll, A.H., Nielsen, A.T., Schovsbo, N.H., Canfield, D.E., 2010. Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. Proceedings of the National Academy of Sciences, 107: 17911-17915. https://doi.org/10.1073/pnas.1011287107
  • 19. Don, J., 1961. The Permo-Carboniferous of the Nowa Ruda region (in POLIsh with English summary). Zeszyty Naukowe Uniwersytetu Wrocławskiego, Nauka o Ziemi, 3: 3-49.
  • 20. Döbelin, N., Kleeberg, R., 2015. Profex: a graphical user interface for the Rietveld refinement program BGMN. Journal of Applied Crystallography, 48: 1573-1580. https://doi.org/10.1107/S1600576715014685
  • 21. Dypvik, H., Harris, N.B., 2001. Geochemical facies analysis of fine-grained siliciclastics using Th/U, Zr/Rb and (Zr+ Rb)/Sr ratios. Chemical Geology, 181: 131-146. https://doi.org/10.1016/S0009-254K0D00278-9
  • 22. Dziedzic, K., 1959. Comparison on Rotliegendes sediments in the region of Nowa Ruda (Middle Sudetes) (in Polish with English summary). Geological Quarterly, 3 (4): 831-846.
  • 23. Dziedzic, K., 1961. Lower Permian in the Intrasudetic Basin. Studia Geologica Polonica, 6: 1-124.
  • 24. Dziedzic, K., 1971. Sedimantation and palaeogeography of the Upper Carboniferous deposits in the Intrasudetic Depression (in Polish with English summary). Geologia Sudetica, 5: 7-75.
  • 25. Dziedzic, K., Teisseyre, A.K., 1990. The Hercynian molasse and younger deposits in the Intra-Sudetic Depression, SW Poland. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 179: 285-305.
  • 26. Eagar, R.M.C., 1987. The shape of the Upper Carboniferous non-marine bivalve Anthraconaia in relation to the organic carbon content of the host sediment. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 78: 177-195. https://doi.org/10.1017/S0263593300011093
  • 27. Falcon-Lang, H.J., 2004. Pennsylvanian tropical rain forests responded to glacial-interglacial rhythms. Geology, 32: 689-692. https://doi.org/10.1130/G20523.1
  • 28. Fielding, C.R., Frank, T.D., Isbell, J.L., 2008. The late Paleozoic ice age - a review of current understanding and synthesis of global climate patterns. GSA, Special Paper, 441: 343-354. https://doi.org/10.1130/2008.244K24)
  • 29. Gastaldo, R.A., DiMichele, W.A., Pfefferkorn, H.W., 1996. Out of the icehouse into the greenhouse: a late Paleozoic analogue for modern global vegetational change. GSA Today, 6: 1-7.
  • 30. Giresse, P., Maley, J., Kelts, K., 1991. Sedimentation and palaeoenvironment in crater lake Barombi Mbo, Cameroon, during the last 25,000 years. Sedimentary Geology, 71: 151-175. https://doi.org/10.1016/0037-0738(91)90099-Y
  • 31. Górecka, T., 1981. Results of palynological studies of the Youngest Carboniferous of the Lower Silesia (in Polish with English summary). Prace Naukowe Instytutu Górnictwa Politechniki Wrocławskiej, 40: 1-58.
  • 32. Górecka-Nowak, A., 1989. Late Carboniferous spore-pollen assemblages of the Unisław IG-1 bore hole (in Polish with English summary). Prace Naukowe Instytutu Górnictwa Politechniki Wrocławskiej, 52, Studia i Materiały, 19: 51-57.
  • 33. Górecka-Nowak, A., 1995. Palynostratigraphy of the Westphalian deposits of the nort-western part of the Intrasudetic Basin (in Polish with English summary). Acta Universitatis Wratislaviensis, Prace Geologiczno-Mineralogiczne, 40: 1-156.
  • 34. Górecka-Nowak, A., 2008. Palynostratigraphy of the uppermost Carboniferous and lowermost Permian sediments in the Sudetes (SW Poland). 12th International Palynological Congress. Terra Nostra, 2: 97.
  • 35. Górecka-Nowak, A., Nowak, G.J., 2008. Charakterystyka petrologiczna i palinologiczna materii organicznej czarnych łupków Sudetów (in Polish). First Polish Geological Congres (ed. G. Haczewski): 32, Kraków, Abstracts.
  • 36. Grabowski, J., Chmielewski, A., Ploch, I., Rogov, M., Smoleń, J., Wójcik-Tabol, P., Leszczyński, K., Maj-Szeliga, K., 2021a. Palaeoclimatic changes and inter-regional correlations in the Jurassic/Cretaceous boundary interval of the Polish Basin: portable XRF and magnetic susceptibility study. Newsletters on Stratigraphy, 54: 123-158. https://doi.org/10.1127/nos/2020/0600
  • 37. Grabowski, J., Stoykova, K., Wierzbowski, H., Wójcik-Tabol, P., 2021b. Upper Berriasian chemostratigraphy, clay minerals and calcareous nannofossils of the Barlya section (Western Balkan, Bulgaria): implications for palaeoclimate and productivity changes, and stratigraphic correllations across the Alpine Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 567: 110252. https://doi.org/10.1016/j.palaeo.2021.110252
  • 38. Håkanson, L., Jansson, M., 1983. Principles of Lake Sedimentology. Springer-Verlag, Berlin.
  • 39. Helz, G.R., Miller, C.V., Charnock, J.M., Mosselmans, J.F.W., Pattrick, R.A.D., Garner, C.D., Vaughan, D.J., 1996. Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence. Geochimica et Cosmochimica Acta, 60: 3631-3642. https://doi.org/10.1016/0016-7037(96)00195-0
  • 40. Huerta-Diaz, M.A., Morse, J.W., 1992. Pyritization of trace metals in anoxic marine sediments. Geochimica et Cosmochimica Acta, 56: 2681-2702. https://doi.org/10.1016/0016-7037(92)90353-K
  • 41. Irion, G., Bush, M.B., De Mello, J.N., Stüben, D., Neumann, T., Müller, G., Junk, J.W., 2006. A multiproxy palaeoecological record of Holocene lake sediments from the Rio Tapajós, eastern Amazonia. Palaeogeography, Palaeoclimatology, Palaeoecology, 240: 523-535. https://doi.org/10.1016/j.palaeo.2006.03.005
  • 42. Izart, A., Palain, C., Malartre, F., Fleck, S., Michels, R., 2005. Paleoenvironments, paleoclimates and sequences of Westphalian deposits of Lorraine coal basin (Upper Carboniferous, NE France). Bulletin de la Société Géologique de France, 176: 301-315. https://doi.org/10.2113/176.3.301
  • 43. Jerzykiewicz, J., 1987. Latest Carboniferous (Stephanian) and Early Permian (Autunian) palynological assemblages from the Intra-sudetic Basin, southwestern Poland. Palynology, 11: 117-131. https://doi.org/10.1080/01916122.1987.9989324
  • 44. Kowalski, A., Furca, M., 2023. Development of a non-perennial to ephemeral fluvial system in continental fault-bounded basin-an example from the early Permian Krajanów Formation of the Intra-Sudetic Basin (NE Bohemian Massif). Geological Quarterly, 67: 31. http://dx.doi.org/10.7306/gq.1701
  • 45. Li, Y.H., Schoonmaker, J.E., 2003. Chemical composition and mineralogy of marine sediments. Treatise on Geochemistry, 7: 1-35. https://10.1016/B0-08-043751-6/07088-2
  • 46. Liu, H., Qiu, Z., Zou, C., Fu, J., Zhang, W., Tao, H., Chen, Z.Q., 2021. Environmental changes in the Middle Triassic lacustrine basin (Ordos, North China): implication for biotic recovery of freshwater ecosystem following the Permian-Triassic mass extinction. Global and Planetary Change, 204: 103559. https://doi.org/10.1016/j.gloplacha.2021.103559
  • 47. Lojka, R., Drábková, J., Zajic, J., Sýkorová, I., Franců, J., Bláhová, A., Grygar, T., 2009. Climate variability in the Stephanian B based on enviionmenial record of the Mšec Lake deposits (Kladno-Rakovnik Basin, Czech Republic). Palaeogeography, Palaeoclimatology, Palaeoecology, 280: 78-93. https://doi.org/10.1016/j.palaeo.2009.06.001
  • 48. Lojka, R., Sýkorová, I.V.A.N.A., Laurin, J.I.Ř.Í., Matysova, P., Matys Grygar, T., 2010. Lacustrine couplet-lamination: evidence for Late Pennsylvanian seasonality in central equatorial Pangaea (Stephanian B, Mšec Member, Central and Western Bohemian basins). Bulletin of Geosciences, 85: 709-734. https://doi.org/10.314/bull.geosci.1210
  • 49. Lorenc, S., 1993. Distribution, lithology and approximate geochemical features of the Sudetes black shales (in Polish with English summary). Prace Geologiczno-Mineralogiczne, 33: 179-208.
  • 50. Mackereth, F.J., 1966. Some chemical observations on post-glacial lake sediments. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 250: 165-213. https://doi.org/10.1098/rstb.1966.0001
  • 51. Makri, S., Wienhues, G., Bigalke, M., Gilli, A., Rey, F., Tinner, W., Vogel, H., Grosjean, M., 2021. Variations of sedimentary Fe and Mn fractions under changing lake mixing regimes, oxygenation and land surface processes during Late-glacial and Holocene times. Science of the Total Environment, 755: 143418. https://doi.org/10.1016/j.scitotenv.2020.143418
  • 52. Martínek, K., Blecha, M., Daněk, V., Franců, J., Hladiková, J., Johnová, R., Uličný, D., 2006. Record of palaeoenvironmental changes in a Lower Permian organic-rich lacustrine succession: integrated sedimentological and geochemical study of the Rudník member, Krkonoše Piedmont Basin, Czech Republic. Palaeogeography, Palaeoclimatology, Palaeoecology, 230: 85-128. https://doi.org/10.1016/j.palaeo.2005.07.009
  • 53. Mastalerz, K., 1990. Lacustrine successions in fault bounded basins: 1. Upper Anthracosia Shale (Lower Permian) of the North Sudetic Basin, SW Pol and. Annales Societatis Geologorum Poloniae, 60: 75-106.
  • 54. Mastalerz, K., Nehyba S., 1997. Comparison of Rotliegende lacustrine depositional sequences from the Intrasudetic, Northsudetic and Boskovice basins (Central Europe). Geologia Sudetica, 30: 21-58.
  • 55. Mazur, S., Aleksandrowski, P., Kryza, R., Oberc-Dziedzic, T., 2006. The Variscan orogen in Poland. Geological Quarterly, 50 (1): 89-118.
  • 56. Miecznik, J.B., 1989. The Upper Silesian and Lower Autunian from NE limb of the Intra-Sudetic Depression (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 363: 5-40.
  • 57. Montanez, I.P., Poulsen, C.J., 2013. The Late Palaeozoic ice age: an evolving paradigm. Annual Review of Earth and Planetary Sciences, 41: 629-656. https://doi.org/10.1146/annurev.earth.031208.10011
  • 58. Naeher, S., Gilli, A., North, R.P., Hamann, Y., Schubert, C.J., 2013. Tracing bottom water oxygenation with sedimentary Mn/Fe ratios in Lake Zurich, Switzerland. Chemical Geology, 352: 125-133. https://doi.org/10.1016/ixhemgeo.2013.06.006
  • 59. Nemec, W., Porębski, S., Teisseyre, A.K., 1982. Explanatory notes to the lithotectonic molasse profile of the Intra-Sudetic Basin, Polish Part. Veröffentlichungen des Zentralinstituts für Physik der Erde, Akademie der Wissenschaften der DDR, 66: 267-278.
  • 60. Nowak, G.J., 1998. Microscopic identification and classification of organic matter of the Upper Carboniferous Anthracosia Shales, Intra-Sudetic Depression, southwestern Poland. Geological Quarterly, 42 (1): 41-58.
  • 61. Nowak, G.J., 2003. Petrology of organic matter dispersed in Late Palaeozoic sedimentary rocks of south western Poland (in Polish with English summary). Cuprum, 4: 1-209.
  • 62. Nowak, G.J., 2007. Comparative studies of organic matter petrography of the late palaeozoic black shales from Southwestern Poland. International Journal of Coal Geology, 71: 568-585.? https://doi.org/10.1016/ixoal.2007.01.004
  • 63. Nowak, G.J., Górecka-Nowak, A., Karcz, P., 2022. Petrographic, palynological and geochemical recognition of dispersed organic matter in the black Anthracosia Shales (Sudetes, south-west Poland). Geological Quarterly, 66 (4): 66-36. http://doi.org/10.7306/gq.1668
  • 64. Nriagu, J.O., Dell, C.I., 1974. Diagenetic formation of iron phosphates in recent lake sediments. American Mineralogist, 59: 934-946.
  • 65. Rachold, V., Brumsack, H.J., 2001. Inorganic geochemistry of Albian sediments from the Lower Saxony Basin NW Germany: palaeoenvironmental constraints and orbital cycles. Palaeogeography, Palaeoclimatology, Palaeoecology, 174: 121-143. https://doi.org/10.1016/S0031-0182(01)00290-5
  • 66. Rickard, D., 2021. Framboids. Oxford University Press.
  • 67. Roscher, M., Schneider, J.W., 2006. Permo-Carboniferous climate: Early Pennsylvanian to Late Permian climate development of central Europe in a regional and global context. Geological Society, London, Special Publications, 265: 95-136. https://doi.org/10.1144/GSL.SP.2006.265.01.05
  • 68. Rust, G.W., 1935. Colloidal primary copper ores at Cornwall Mines, southeastern Missouri. The Journal of Geology, 43: 398-426. https://doi.org/10.1086/624318
  • 69. Sawłowicz, Z., 1993. Pyrite framboids and their development: a new conceptual mechanism. Geologische Rundschau, 82: 148-156. https://doi.org/I: 10.1007/BF00563277
  • 70. Sawłowicz, Z., 2000. Framboids: from their origin to application. Wydawnictwo Oddziału Polskiej Akademii Nauk, Warszawa.
  • 71. Stollhofen, H., Frommherz, B., Stanistreet, I.G., 1999. Volcanic rocks as discriminants in evaluating tectonic versus climatic control on depositional sequences, Permo-Carboniferous continental Saar-Nahe Basin. Journal of the Geological Society, 156: 801-808. https://doi.org/10.1144/gsigs.156.4.0801
  • 72. Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: its Composition and Evolution. Blackwell Publication, United States.
  • 73. Tribovillard, N., Algeo, T.J., Lyons, T., Riboulleau, A., 2006. Trace metals as paleoredox and paleoproductivity proxies: an update. Chemical Geology, 232: 12-32. https://doi.org/10.1016/i.chemgeo.2006.02.012
  • 74. Trzepierczyńska, A., 1994. Microfloristic studies of the Ścinawka Dolna IG-1 borehole. In: Palaeogeography of the Upper Carboniferous and Lower Autunian deposits in the Nowa Ruda region. (ed. A. Bossowski). Polish Geological Institute, NAG: 728/94.
  • 75. Uffmann, A.K., Littke, R., Rippen, D., 2012. Mineralogy and geochemistry of Mississippian and Lower Pennsylvanian black shales at the northern margin of the Variscan Mountain Belt (Germany and Belgium). International Journal of Coal Geology, 103: 92-108. https://doi.org/10.1016/ixoal.2012.08.001
  • 76. Wei, H., Jiang, X., 2019. Early Cretaceous ferruginous and its control on the lacustrine organic matter accumulation: constrained by multiple proxies from the Bayingebi Formation in the Bayingebi Basin, inner Mongolia, NW China. Journal of Petroleum Science and Engineering, 178: 162-179. https://doi.org/10.1016/i.petrol.2019.03.037
  • 77. Wersin, P., Höhener, P., Giovanoli, R., Stumm, W., 1991. Early diagenetic influences on iron transformations in a freshwater lake sediment. Chemical Geology, 90: 233-252. https://doi.org/10.1016/0009-254K9D90102-W
  • 78. Wilkin, R.T., Barnes, H.L., Brantley, S.L., 1996. The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions. Geochimica et Cosmochimica Acta, 60: 3897-3912. https://doi.org/10.1016/0016-7037(96)00209-8
  • 79. Wirth, S.B., Gilli, A., Niemann, H., Dahl, T.W., Ravasi, D., Sax, N., Hamann, Y., Peduzzi, R., Peduzzi, S., Tonolla, M., Lehmann, M.F., Anselmetti, F.S., 2013. Combining sedimentological, trace metal (Mn, Mo) and molecular evidence for reconstructing past water-column redox conditions: the example of meromictic Lake Cadagno (Swiss Alps). Geochimica et Cosmochimica Acta, 120: 220-238. https://doi.org/10.1016/i.gca.2013.06.017
  • 80. Wołkowicz, S., 1988. On the sedimentation of the Lower Permian Walchia shales from Ratno Dolne (lntra-Sudetic Depression) (in Polish with English summary). Przegląd Geologiczny, 36: 214-218.
  • 81. Wójcik-Tabol, P., Dąbek, J., Nowak, G.J., 2021. Preliminary mineralogical characteristics of the Anthracosia Shales from the Intra-Sudetic Synclinorium (in Polish with English summary). Przegląd Geologiczny, 69: 389-392. https://doi.org/10.7306/2021.23
  • 82. Yuan, W., Liu, G., Stebbins, A., Xu, L., Niu, X., Luo, W., Li, C., 2017. Reconstruction of redox conditions during deposition of organic-rich shales of the Upper Triassic Yanchang Formation, Ordos Basin, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 486: 158-170. https://doi.org/10.1016/i.palaeo.2016.12.020
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6af3bfd-7717-4386-a805-7dd6a67b590c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.