PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nutrient Absorption and Biomass Production by the Marine Diatom Chaetoceros Muelleri: Effects of Temperature, Salinity, Photoperiod, and Light Intensity

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The marine diatom Chaetoceros muelleri is commonly used for aquacultural feed and is well known for its fast growth and easy maintenance. In order to evaluate the potential of C. muelleri to be used for the nutrient removal and biomass production from eutrophic saline wastewaters, the algae were cultured under a wide range of temperature, salinity, photoperiod, and light intensity. The optimum temperature for the biomass production was observed at 30°C, but the algae could maintain at least 66% of the highest production between 20°C and 35°C. The optimum salinity for the biomass production was 25, but the algae could maintain at least 22% of the highest production between 10 and 30. Both light intensity and photoperiod affected the algal biomass production, and the minimum light requirement was considered 100 μmol m−2•s−1 for 6 hours to maintain the biomass production and nitrogen (N) and phosphorus (P) absorption. Throughout all the experiments, the N and P absorption increased with the biomass production, but the ratio of N and P to the biomass exponentially decreased with the biomass production. These results showed that C. muelleri is tolerant to the wide range of environmental conditions, absorbing nutrients and producing organic matter. C. muelleri has a great potential to be introduced in the water treatment processes, especially where the temperature and salinity fluctuate.
Rocznik
Strony
231--240
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
  • Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Brunei Darussalam
  • Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Brunei Darussalam
  • Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Brunei Darussalam
Bibliografia
  • 1. Abinandan, S., Subashchandrabose, S.R., Venkateswarlu, K., Megharaj, M. 2018. Nutrient removal and biomass production: advances in microalgal biotechnology for wastewater treatment. Critical Reviews in Biotechnology, 38(8), 1244−1260. doi: 10.1080/07388551.2018.1472066.
  • 2. Ansari, F.A., Singh, P., Guldhe, A., Bux, F. 2017. Microalgal cultivation using aquaculture wastewater: Integrated biomass generation and nutrient remediation. Algal Research, 21, 169−177. doi: 10.1016/j.algal.2016.11.015
  • 3. Aslam, A., Fazal, T., Uz-Zaman, Q., Shan, A., Rehman, F., Iqbal, J., Rashid, N., Rehman, M. S. U. 2020. Biorefinery of microalgae for nonfuel products, Microalgae Cultivation for Biofuels Production, 197–209. doi: 10.1016/b978–0-12–817536–1.00013–8
  • 4. Barros, M. U., Coelho, A. A., Silva, J. W., Bezerra, J. H., Moreira, R. T., Farias, W. R., Moreira, R. L. 2014. Lipid content of marine microalgae Chaetoceros muelleri Lemmermann (Bacillariophyceae) grown at different salinities. Biotemas, 27(2), 1. doi: 10.5007/2175–7925.2014v27n2p1
  • 5. Bartley, M. L., Boeing, W. J., Corcoran, A. A., Holguin, F. O., Schaub, T. 2013. Effects of salinity on growth and lipid accumulation of biofuel microalga Nannochloropsis salina and invading organisms. Biomass and Bioenergy, 54, 83–88. doi: 10.1016/j.biombioe.2013.03.026
  • 6. Benavente-Valdés, J. R., Aguilar, C., ContrerasEsquivel, J. C., Méndez-Zavala, A., Montañez, J. 2016. Strategies to enhance the production of photosynthetic pigments and lipids in chlorophycae species. Biotechnology Reports, 10, 117–125. doi: 10.1016/j.btre.2016.04.001
  • 7. Caporgno, M. P., Taleb, A., Olkiewicz, M., Font, J., Pruvost, J., Legrand, J., Bengoa, C. 2015. Microalgae cultivation in urban wastewater: nutrient removal and biomass production for biodiesel and methane. Algal Research, 10, 232–239. doi: 10.1016/j.algal.2015.05.011
  • 8. Chisti, Y. 2007. Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306. doi: 10.1016/j.biotechadv.2007.02.001
  • 9. Collos, Y., Mornet, F., Sciandra, A., Waser, N., Larson, A., Harrison, P. J. 1999. An optical method for the rapid measurement of micromolar concentrations of nitrate in marine phytoplankton cultures. Journal of Applied Phycology, 11(2), 179–184. doi: 10.1023/a:1008046023487
  • 10. Datta, A., Marella, T. K., Tiwari, A., Wani, S. P. 2019. The diatoms: from eutrophic indicators to mitigators. Application of Microalgae in Wastewater Treatment, 19–40. doi: 10.1007/978–3-030–13913–1_2
  • 11. Driver, T., Bajhaiya, A. Pittman, J. K. 2014. Potential of bioenergy production from microalgae. Current Sustainable Renewable Energy Report, 1(3), 94–103. doi: 10.1007/s40518–014–0011–8
  • 12. Fujii, S., Nishimoto, N., Notoya, A., Hellebust, J. A. 1995. Growth and osmoregulation of Chaetoceros muelleri in relation to salinity. Plant and Cell Physiology, 36(5), 759–764. doi: 10.1093/oxfordjournals.pcp.a078819
  • 13. Gengmao, Z., Mehta, S., Zhaopu, L. 2010. Use of saline aquaculture wastewater to irrigate salt-tolerant Jerusalem artichoke and sunflower in semiarid coastal zones of China. Agricultural Water Management, 97(12), 1987–1993. doi: 10.1016/j.agwat.2009.04.013
  • 14. Guillard, R. R., Ryther, J. H. 1962. Studies of marine planktonic diatoms: I. Cyclotella Nana Hustedt, and Detonula confervacea (Cleve) Gran. Canadian Journal of Microbiology, 8(2), 229–239. doi: 10.1139/m62–029
  • 15. Guo, Z., Liu, Y., Guo, H., Yan, S., Mu, J. 2013. Microalgae cultivation using an aquaculture wastewater as growth medium for biomass and biofuel production. Journal of Environmental Sciences, 25, S85-S88. doi: 10.1016/s1001–0742(14)60632-x
  • 16. Hansen, H. P., Koroleff, F. 1999. Determination of dissolved inorganic phosphate. Methods of seawater analysis (3rd ed., pp. 170–180). Weinheim, Baden-Württemberg, Germany: Wiley-VCH Verlag GmbH. doi: 10.1002/9783527613984.ch10
  • 17. Harrison, P. J., Thompson, P. A., Calderwood, G. S. 1990. Effects of nutrient and light limitation on the biochemical composition of phytoplankton. Journal of Applied Phycology, 2(1), 45–56. doi: 10.1007/bf02179768
  • 18. Hong, D. D., Mai, D. T. N., Thom, L. T., Ha, N. C., Lam, B. D., Tam, L. T. Anh, H. T. L. Thu, N. T. H. 2013. Biodiesel production from Vietnam heterotrophic marine microalga Schizochytrium mangrovei PQ6. Journal of Bioscience and Bioengineering, 116(2), 180–185. doi: 10.1016/j.jbiosc.2013.02.002
  • 19. Klein-Marcuschamer, D., Chisti, Y., Benemann, J. R., Lewis, D. 2013. A matter of detail: Assessing the true potential of microalgal biofuels. Biotechnology and Bioengineering, 110(9), 2317–2322. doi: 10.1002/bit.24967
  • 20. Krzemińska, I., Pawlik-Skowrońska, B., Trzcińska, M., Tys, J. 2014. Influence of photoperiods on the growth rate and biomass productivity of green microalgae. Bioprocess and Biosystems Engineering, 37(10), 2137–2137. doi: 10.1007/s00449–014–1260-z
  • 21. Kües, U. 2015. Fungal enzymes for environmental management. Current Opinion in Biotechnology, 33, 268–278. doi: 10.1016/j.copbio.2015.03.006
  • 22. Lawton, R. J., Mata, L., de Nys, R., Paul, N. A. 2013. Algal bioremediation of waste waters from land-based aquaculture using Ulva: Selecting target species and strains. PLoS ONE, 8(10). doi: 10.1371/journal.pone.0077344
  • 23. Leonardos, N., Geider, R. J. 2004. Responses of elemental and biochemical composition of Chaetoceros muelleri to growth under varying light and nitrate:phosphate supply ratios and their influence on critical N:P. Limnology and Oceanography, 49(6), 2105–2114. doi: 10.4319/lo.2004.49.6.2105
  • 24. Li, Y., Chen, Y.-F., Chen, P., Min, M., Zhou, W., Martinez, B., Zhu, J., Ruan, R. 2011. Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresource Technology, 102, 5138–5144. doi: 10.1016/j.biortech.2011.01.091
  • 25. López-Elías, J. A., Voltolina, D., Enríquez-Ocaña, F., Gallegos-Simental, G. 2005. Indoor and outdoor mass production of the diatom Chaetoceros muelleri in a mexican commercial hatchery. Aquacultural Engineering, 33(3), 181–191. doi: 10.1016/j.aquaeng.2005.01.001
  • 26. Magnotti, C., Lopes, R., Derner, R., Vinatea, L. 2016. Using residual water from a marine shrimp farming BFT system. part I: nutrient removal and marine microalgae biomass production. Aquaculture Research, 47(8), 2435–2443. doi: 10.1111/are.12691
  • 27. Malibari, R., Sayegh, F., Elazzazy, A. M., Baeshen, M. N., Dourou, M., Aggelis, G. 2018. Reuse of shrimp farm wastewater as growth medium for marine microalgae isolated from Red Sea – Jeddah. Journal of Cleaner Production, 198, 160–169. doi: 10.1016/j.jclepro.2018.07.037
  • 28. Mandal, S., Mallick, N. 2011. Waste utilization and biodiesel production by the green microalga Scenedesmus obliquus. Applied and Environmental Microbiology, 77(1), 374–377. doi: 10.1128/AEM.01205–10
  • 29. Marinho-Soriano, E., Panucci, R. A., Carneiro, M. A. A., Pereira, D. C. 2009. Evaluation of Gracilaria caudata J. Agardh for bioremediation of nutrients from shrimp farming wastewater. Bioresource Technology, 100, 6192–6198. doi: 10.1016/j.biortech.2009.06.102
  • 30. Miyajima, T., Tanaka, Y., Koike, I. 2005. Determining 15N enrichment of dissolved organic nitrogen in environmental waters by gas chromatography/negative-ion chemical ionization mass spectrometry. Limnology and Oceanography: Methods, 3, 164–173. doi: 10.4319/lom.2005.3.164
  • 31. Mccarty, P. L., Bae, J., & Kim, J. 2011. Domestic wastewater treatment as a net energy producer – can this be achieved? Environmental Science & Technology, 45, 7100–7106. doi: 10.1021/es2014264
  • 32. Meseck, S. L., Alix, J. H., & Wikfors, G. H. 2005. Photoperiod and light intensity effects on growth and utilization of nutrients by the aquaculture feed microalga, Tetraselmis chui (PLY429). Aquaculture, 246(1–4), 393–404. doi: 10.1016/j.aquaculture.2005.02.034
  • 33. Mondal, M., Halder, G., Oinam, G., Indrama, T., & Tiwari, O. N. 2019. Bioremediation of organic and inorganic pollutants using microalgae. In New and Future Developments in Microbial Biotechnology and Bioengineering: Microbial Secondary Metabolites Biochemistry and Applications. Elsevier B.V. doi: 10.1016/B978–0-444–63504–4.00017–7
  • 34. Msuya, F. E., & Neori, A. 2002. Ulva reticulata and Gracilaria crassa: macroalgae that can biofilter effluent from tidal fishponds in Tanzania. Western Indian Ocean Journal of Marine Science, 1(2), 117–126.
  • 35. Pate, R., Klise, G., & Wu, B. 2011. Resource demand implications for US algae biofuels production scale-up. Applied Energy, 88(10), 3377–3388. doi: 10.1016/j.apenergy.2011.04.023
  • 36. Raghavan, G., Haridevi, C. K., & Gopinathan, C. P. 2008. Growth and proximate composition of the Chaetoceros calcitrans f. pumilus under different temperature, salinity and carbon dioxide levels. Aquaculture Research, 39(10), 1053–1058. doi: 10.1111/j.1365–2109.2008.01964.x
  • 37. Rahmadi, A., Mulyani, Y., & Lewaru, M. W. 2020. Effect of salinity difference on lipid content from Chaetoceros muelleri on continuous reactors. Advanced Journal of Graduate Research, 7(1), 3–10. doi: 10.21467/ajgr.7.1.3–10
  • 38. Rai, M. P., Gautom, T., & Sharma, N. 2015. Effect of salinity, pH, light intensity on growth and lipid production of microalgae for bioenergy application. OnLine Journal of Biological Sciences, 15(4), 260–267. doi: 10.3844/ojbsci.2015.260.267
  • 39. Raimbault, P., Diaz, F., Pouvesle, W., & Boudjellal, B. 1999. Simultaneous determination of particulate organic carbon, nitrogen and phosphorus collected on filters, using a semiautomatic wet-oxidation method. Marine Ecology Progress Series, 180(1994), 289–295. doi: 10.3354/meps180289
  • 40. Renaud, S. M., & Parry, D. L. 1994. Microalgae for use in tropical aquaculture I: Gross chemical and fatty acid composition of twelve species of microalgae from the Northern Territory, Australia. Journal of Applied Phycology, 6(3), 337–345. doi: 10.1007/BF02181948
  • 41. Renaud, Susan M., Thinh, L. Van, Lambrinidis, G., & Parry, D. L. 2002. Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture, 211(1–4), 195–214. doi: 10.1016/S0044–8486(01)00875–4
  • 42. Salama, M., Abou-Shanab, R. A. I., Kim, J. R., Lee, S., Kim, S.-H., Oh, S.-E., Kim, H.-C., Roh, H.-S., Jeon, B.-H. 2014. The effects of salinity on the growth and biochemical properties of Chlamydomonas mexicana GU732420 cultivated in municipal wastewater. Environmental Technology, 35(12), 1491–1498. doi: 10.1080/09593330.2013.871350
  • 43. Sobczuk, T. M., Camacho, F. G., Grima, E. M., & Chisti, Y. 2006. Effects of agitation on the microalgae Phaeodactylum tricornutum and Porphyridium cruentum. Bioprocess and Biosystems Engineering, 28(4), 243–250. doi: 10.1007/s00449–005–0030–3
  • 44. Sode, S., Bruhn, A., Balsby, T. J. S., Larsen, M. M., Gotfredsen, A., & Rasmussen, M. B. 2013. Bioremediation of reject water from anaerobically digested waste water sludge with macroalgae (Ulva lactuca, Chlorophyta). Bioresource Technology, 146, 426–435. doi: 10.1016/j.biortech.2013.06.062
  • 45. Tanaka, Y., Ashaari, A., Mohamad, F. S., Lamit, N., 2020. Bioremediation potential of tropical seaweeds in aquaculture: low-salinity tolerance, phosphorus content, and production of UV-absorbing compounds. Aquaculture, 518, 734853. doi: 10.1016/j.aquaculture.2019.734853
  • 46. Ummalyma, S. B., Pandey, A., Sukumaran, R. K., & Sahoo, D. 2018. Bioremediation by Microalgae: Current and Emerging Trends for Effluents Treatments for Value Addition of Waste Streams. In Biosynthetic Technology and Environmental Challenges (pp. 355–375). Springer Nature Singapore. doi: 10.1007/978–981–10–7434–9_19
  • 47. Wang, X., Liang, J., Luo, C., Chen, C., & Gao, Y. 2014. Biomass, total lipid production, and fatty acid composition of the marine diatom Chaetoceros muelleri in response to different CO2 levels. Bioresource Technology, 161, 124–130. doi: 10.1016/j.biortech.2014.03.012
  • 48. Yang, J., Li, X., Hu, H., Zhang, X., Yu, Y., & Chen, Y. 2011. Growth and lipid accumulation properties of a freshwater microalga, Chlorella ellipsoidea YJ1, in domestic secondary effluents. Applied Energy, 88(10), 3295–3299. doi: 10.1016/j.apenergy.2010.11.029
  • 49. Zhi, R., Yang, A., Zhang, G., Zhu, Y., Meng, F., & Li, X. 2019. Effects of light-dark cycles on photosynthetic bacteria wastewater treatment and valuable substances production. Bioresource Technology, 274, 496–501. doi: 10.1016/j.biortech.2018.12.021
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6ac3316-7cc9-49cc-8617-8654bc9e14fa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.