PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Efektywność usuwania związków organicznych podczas oczyszczania wody w procesie filtracji przez biologicznie aktywny filtr węglowy z identyfikacją mikroorganizmów

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Effectiveness of Organic Compounds Removing During Water Treatment by Filtration Through a Biologically Active Carbon Filter with the Identification of Microorganisms
Języki publikacji
PL
Abstrakty
EN
A study of effectiveness of organic compounds removing from the water was carried out in the pilot scale. Filter column with 100 mm diameter and 3 m height was filled with activated carbon WG-12 at the height of 2.1 m and placed in a water jacket. The water jacket was made with a pipe with the diameter of 140 mm, wherein water with the same temperature as filtered water, flows from top to bottom of jacket at all times. Activated carbon was biologically "inoculated" with backwash water taken from the carbon filters from existing Water Treatment Plant. Water samples were collected at the inlet and in the vertical profile of filter column. Following factors were analyzed in all samples: temperature, pH, dissolved oxygen, alkalinity, COD (KMnO4), UV254 absorbance, TOC, total number of mesophilic and psychrophilic bacteria. In some water samples, biochemical diagnostics were performed using an automated system Vitek 2 Compact (bioMerieux), in order to identify microorganisms. Samples of bed were also collected in the vertical profile of the filter to determine the total number of mesophilic and psychrophilic bacteria. Studies showed relatively short time of biological activation of filter bed, which undoubtedly was an effect of the proper preparation of the bed and conditions of the process (contact time, the optimum temperature and pH, and sufficient content of organic substances which was the nutrients for bacteria). Activated carbon WG-12, which was used during the studies, was a very good base for the growth of microorganisms in the filter bed. Microbial activity of filter was confirmed by indicator EMS which amounted to <1 and bacteriological analysis of water and the bed. The content of organic compounds in the water during filtration through a biologically active carbon bed decreased along to depth of filter. The lowering of organic compounds amount at higher depths of the filter bed was correlated with the growing amount of mesophilic and psychrophilic bacteria in the bed. In a vertical cross section of the filter Pseudomonas putida, Pseudomonas aeruginosa, Acinetobacter nosocomialis, Acinetobacter pittii, Acinetobacter baumannii, Acinetobacter calcoaceticus have been identified. Due to the fact that Pseudomonas putida and Pseudomonas aeruginosa are the bacteria responsible for the decomposition of organic compounds, their presence undoubtedly contributed to the reduction of biodegradable fraction of organic matter present in the filtered water.
Rocznik
Strony
235--246
Opis fizyczny
Bibliogr. 30 poz., tab., rys.
Twórcy
autor
  • Envirotech – sp. z o.o., Poznań
autor
  • Politechnika Poznańska
  • Politechnika Poznańska
autor
  • Wielkopolskie Centrum Onkologii, Poznań
Bibliografia
  • 1. Abeynayaka, A., Visvathan, C., Khandarith, S., Hashimoto, T., Katayama, H. Matsui, Y., Werellagama, D.R.I.B. (2014). Long-term studies on hybrid ceramic microfiltrtion for treatment of surface water containing high dissolved organic matter. Water Science and Technology: Water Supply, 14(2), 246-254.
  • 2. Adamski, W., Szlachta, M. (2011). Technologie eliminacji naturalnych substancji organicznych występujących w wodach. Technologia wody, 1, 17-21.
  • 3. Baghoth, S.A., Sharma, S.K., Guitard, M., Heim, V., Croue, J.P. (2011). Removal of NOM-constituents as characterized by LC-OCD and F-EEM during drinking water treatment. Journal of Water Supply: Research and Technology-AQUA, 60(7), 412-424.
  • 4. Bodzek, M. (2013). Przegląd możliwości wykorzystania technik membranowych w usuwaniu mikroorganizmów i zanieczyszczeń organicznych ze środowiska wodnego. Inżynieria i Ochrona Środowiska, 16(1), 5-37.
  • 5. Bond, T., Goslan, E.H., Parsons, S.A., Jefferson, B. (2013). Treatment of disinfection byproduct precursors. Environ. Technol., 32, 1-21.
  • 6. Gibert, O., Lefevre, B., Fernandez, M., Bernat, X., Paraira, M., Calderer, M., Martinez-Llado, X. (2013). Characterising biofilm development on granular activated carbon used for drinking water production. Water Research, 47, 1101-1110.
  • 7. Gumińska, J. (2013). Modification of conventional coagulation system by application of post-coagulation sludge recirculation. Ochrona Środowiska, 35(3), 17-22.
  • 8. Hem, L.J., Efraimsen, H. (2001). Assimilable organic carbon in molecular weight fractions of natural organic matter. Water Research, 35(4), 1106-1110.
  • 9. Paterson, D. L. (2006). The Epidemiological Profile of Infections with Multidrug-Resistant Pseudomonas aeruginosa and Acinetobacter Species. Clini- cal Infectious Diseases, 43, 43-48. http://cid.oxfordjournals.org/content/43/Supplement_2/S43.short
  • 10. Huber, S., Balz,A., Abert, M., Pronk, W. (2011). Characterisation of aquatic humic and non-humic matter with size-exclusion chromatography – organic carbon detection – organic nitrogen detection (LC-OCD-OND). Water Research, 45, 879-885.
  • 11. Hur, J., Williams, M. A., Schlautman, M. A. (2006). Evaluating spectroscopic and chromatographic techniques to resolve dissolved organic matter via end member mixing analysis. Chemosphere, 63, 387-402.
  • 12. Kiedryńska, L. (2004). Zasiedlanie granulowanych węgli aktywnych przez mikroorganizmy w procesie uzdatniania wody. Ochrona Środowiska, 26(1), 39-42.
  • 13. Kim, H., Yu, M. (2007). Characterization of aquatic humic substances to DBPs formation in advanced treatment processes for conventionally treated water. Journal of Hazardous Materials, 143, 486-493.
  • 14. Kłos, M. (2013). Technological assumptions of coagulation and dissolved air troll system in water treatment process. Ochrona Środowiska, 35(3), 39-43.
  • 15. Lawler, D.S., Mikelonis, A.M., Kim, I., Lau, B.L.T., Youn S. (2013). Silver nano particle removal from drinking water: flocculation/sedimentation or filtration? Water Science and Technology: Water Supply, 13(5), 1181-1187.
  • 16. Matilainen, A., Vepsalainen, M., Sillanpaa, M. (2010). Natural organic matter removal by coagulation during drinking water treatment: A review. Advances in Colloid and Interface Science, 159, 189-197.
  • 17. Nowacka, A., Włodarczyk-Makuła, M. (2012). Zmiany adsorbancji w nadfiolecie (UV254) w wodzie w procesach uzdatniania. LAB Laboratoria, Aparatura, Badania, R. 17(1), 28-31.
  • 18. Olesiak, P., Stępniak, L. (2014). Metody intensyfikacji procesu sorpcji w uzdatnianiu wod. W: Interdyscyplinarne zagadnienia w inżynierii i ochronie środowiska. Tom 4, pod red. Traczewskiej T. M., Kazimierczak B. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej.
  • 19. Pruss, A., Maciołek, A., Lasocka-Gomuła, I. (2009). Wpływ aktywności biologicznej złóż węglowych na skuteczność usuwania związków organicznych z wody. Ochrona Środowiska, 31(4), 31-34.
  • 20. Pruss, A., Pruss, P. (2013). Usuwanie zanieczyszczeń organicznych z wody powierzchniowej o małej zasadowości. Ochrona Środowiska, 35(4), 47-50.
  • 21. Pruss, A. (2015a). Removal of Organic Matter from Surface Water During Coagulation with Sludge Flotation and Rapid Filtration – a Full Scale Technological Investigation. Water Science and Technology, 71(4), 645-652.
  • 22. Pruss, A. (2015b). Selection of the Surface Water Treatment Technology – a Full Scale Technological Investigation. Water Science and Technology, 71(4), 638-644.
  • 23. Pruss, A., Pruss, P. (2016). Próba wykorzystania pyłowego węgla aktywnego oraz selektywnego anionitu do zwiększenia skuteczności usuwania związków organicznych z wody po procesie koagulacji. Ochrona Środowiska, 38(1), 25-28.
  • 24. Rosińska, A., Rakocz, K. (2013). Rola biodegradowalnej materii organicznej w procesie dezynfekcji wody. Inżynieria i Ochrona Środowiska, 16(4), 511-521.
  • 25. Seredyńska-Sobecka, B., Tomaszewska, M., Janus, M., Morawski, A.W. (2006). Biological activation of carbon filters. Water Research, 40, 355-363.
  • 26. Simpson, D. R. (2008). Biofilm processes in biologically active carbon water purification, Water Research, 42, 2839-2848.
  • 27. Sohn, J., Amy, G., Yoon, Y. (2007). Process-train profiles of NOM through a drinking water treatment plant. Journal of the American Water Works Association, 99(6), 145-153.
  • 28. Teixeira, M.R., Miguel, L.M. (2011). The impact of natural matter seasonal variations in drinking water quality. Desalination Water Treatment, 36(1-3), 344-353.
  • 29. Vasyukova, E., Proft, R. Jousten, J., Slavik, I., Uhl, W. (2013). Removal of natural organic matter and trihalomethane formation potential in a fullscale drinking water treatment plant. Water Science and Technology: Water Supply, 13(4), 1099-1108.
  • 30. White, C. P., DeBry, R. W., Lytle, D. A. (2012). Microbial Survey of a Full- Scale, Biologically Active Filter for Treatment of Drinking Water. Applied and Environmental Microbiology, 78(17), 6390-6394.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6ab7097-dc64-483d-8827-283e1fbcd258
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.