Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the paper the study of different crashworthiness indicators used to evaluate energy absorbing effectiveness of thin-walled energy absorbers is presented. Several different indicators are used to assess an effectiveness of two types of absorbing structures, namely thin-walled prismatic column with flaws and thin-walled prismatic frustum (hollow or foam filled) in both cases subjected to axial compressive impact load. The indicators are calculated for different materials and different geometrical parameters. The problem of selection of the most appropriate and general indicators is discussed.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
54--59
Opis fizyczny
Bibliogr. 13 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Mechanical Engineering, Department of Strength of Materials, Lodz University of Technology, 90-924 Łódź, Stefanowskiego 1/15, Poland
autor
- Faculty of Mechanical Engineering, Department of Strength of Materials, Lodz University of Technology, 90-924 Łódź, Stefanowskiego 1/15, Poland
autor
- Department of Machine Construction and Mechatronics, Lublin University of Technology, 20-618 Lublin, Nadbystrzycka 36, Poland
Bibliografia
- 1. Alghamdi A.A.A. (2001), Collapsible impact energy absorbers: an overview, Thin-Walled Struct, 39, 189-213.
- 2. Darvizeh A., Meshkinzar A., Alitavol M., Rajabierhard R. (2017), Low velocity impact of empty and foam filled circumferentially grooved thick-walled circular tubes, Thin-Walled Struct., 110, 97-105.
- 3. Ei-Sobky H., Singace A.A., Petsios R. . (2001), Mode of collapse and energy absorption characteristics of constrained frusta under axial impact loading. Int.J.Mech.Sci., 43, 743-757.
- 4. Ferdynus M., Kotełko M.,Kral J. (2018) Energy absorption capability numerical analysis of thin-walled prismatic tubes with corner dents under axial impact, accepted for publication, Maintenance and Reliability, v.20 (2), 248-255
- 5. Ferdynus M., Kotełko M., Mołdawa A. (2016), Prismatic tubular thin-walled members as energy absorbers, chapter in Statics, dynamics and stability of structures, (series of monographs) ed. by R.J. Mania, Lodz University of Technology, 4, 178-195.
- 6. Hanssen A.C., Langseth M., Hopperstad O.S. (2000), Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler, International Journal of Impact Engineering, 24(5), 475–507.
- 7. Jones N. (2003), Structural Impact, Cambridge University Press.
- 8. Jones N. (2010), Energy absorbing effectiveness factor, Int. J. of Impact Engineering, 37, 754-765.
- 9. Kotełko M. (2010), Load-capacity and mechanisms of failure of thinwalled structures (in Polish), WNT, Warszawa.
- 10. Mołdawa A., Kotełko M. (2016), Impact behaviour of spot-welded thin-walled frusta, Acta Mechanica et Automatica, 10 (4), 280-284
- 11. Sarkabiri B., Jahan A., Rezvani M. (2015), Multi-objective crashworthiness optimization of thin-walled conical groove tubes filled with polyurethane foam, 3 rd Polish Congress of Mechanics, 21 st International Conference of Computer Methods in Mechanics, 947-948.
- 12. Zhang X., Cheng G., Zhang H. (2009), Numerical investigations on a new type of energy-absorbing structure based on free inversion of tubes, Int. J. of Mechanical Sciences, 51, 64-76.
- 13. Zhe Y., You Y., Wei Y., Huang Ch. (2017), Crushing behaviour of a thin-walled circular tube with internal gradient grooves fabricated by SLM 3D printing, Thin-Walled Struct., 111, 1-8.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6a94132-831f-43ba-9f74-64a0f351467f