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Abstract: Mazurkiewicz traces are a widely used model for de-
scribing the languages of concurrent systems computations. The
causal structure of atomic actions occurring in a process modeled as
a trace generates a partial order. Hasse diagrams of such order are
very common structures used for presentation and investigation in
the concurrency theory, especially from the behavioural perspective.
We present effective algorithms for Hasse diagrams construction and
transformation. Later on, we use them for enumeration of all lin-
earisations of the partial order that represents a concurrent process.
Additionally, we attach the flexible visual implementation of all con-
sidered algorithms.
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Introduction

Concurrent systems are extensively investigated through the perspective of the
causal structure of their actions (understood as the most detailed elements of the
system behaviour), which leads to the respective formal language semantics. An
example of utilizing causal structures is IBM analytic tool InfoSphere (see IBM,
2008) that operates on job sequences, see also Stevenson (2007). On the other
hand, in many theoretical models such causal structure of atomic actions estab-
lishes the partial order. Very good examples are Petri nets (see Petri, 1962) and
Mazurkiewicz traces (see Cartier and Foata, 1969; Mazurkiewicz, 1977), where
a trace is understood as the class of equivalent sequential computations of the
considered Petri net. Graphs of traces (implied by the dependency relation), as
well as their transitive closures (graphs of considered partial orders) are usually
illegible. Therefore, the Hasse diagrams, which are transitive reductions of par-
tial orders, are widely adopted for the graphical visualisation in the poset and
trace theories, see Diekert and Rozenberg (1995), Gastin (1990), Graham et al.
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(1995). Although a single trace τ combines equivalent (from the behavioral
point of view) sequences of actions, its Hasse diagram is unique and unambigu-
ous. Moreover, it is worthwhile to notice that every partially ordered set can be
defined by a trace with the same Hasse diagram, see Mikulski, Piątkowski and
Smyczyński, (2011).

The proper visualisation of graphs is a very popular topic. In the case
of Hasse diagrams, there are some studies contributing to this issue, see, in
particular, Freese (2004a), Garg and Tamassia (1994). Some other related works
are discussed in section 5.1. There are also some papers concerning the problem
of maintaining the transitive reduction of a directed acyclic graph. See, for
instance, Poutré and van Leeuwen (1987), where the operations of insertion and
deletion of single edges are investigated. From the computational complexity
point of view, the strict relationship between the transitive reduction and the
transitive closure were deeply studied (see Aho, Garey and Ullman, 1972). In the
general case, both problems may be solved using boolean matrix multiplication.
However, in practice, some less efficient methods (with respect to the time
complexity) are used (see Eve and Kurki-Suonio,1977; Poutreánd van Leeuwen,
1987; Purdom, 1970). As far as we know, none of existing approaches utilizes the
relationship between the causal structure of traces and partially ordered sets.
Furthermore, editing the visualised poset structure in available software tools
is difficult or impossible. To fill this gap we provide an application DiaDem,by
Mikulski and Piątkowski (2012), which implements algorithms described in this
paper and allows for the investigation of this topic from the point of view of the
trace theory.

This paper describes several algorithms that not only construct the Hasse
diagram but also transform its structure. Finally, these procedures are used to
generate all representatives of a trace (the linearisations of its causal order). The
concept of the provided algorithms is based on a notion of the tail of the trace –
the special data structure enriching the diagram. The approach presented here
is the extension of the results of Mikulski, Piątkowski and Smyczyński (2011),
where the tail structure was first defined.

We start with introducing some basic definitions and notations. Then we in-
vestigate the needed data structures and present simple algorithm for the Hasse
diagram construction. Further, we extend this simple approach to achieve the
possibility of efficient diagram reconstruction (by removing maximal elements).
The next section is devoted to the enumeration of all representatives of a trace.
Finally, we present a short survey of existing software related to this topic, in-
cluding the application DiaDem. The paper is concluded by pointing out some
directions for future work. A few examples, which illustrate the running details
of the presented algorithms are shown in the appendix Examples.
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1. Basic notions

1.1. Algebra of actions

Throughout the paper we use the standard notions of the formal language the-
ory, see Hopcroft and Ullman (1979), Rozenberg and Salomaa (1997). In partic-
ular, by an alphabet we mean a nonempty finite set Σ, the elements of which are
called (atomic) actions. Finite sequences over Σ are called words. The set of all
finite words over Σ, including the empty word λ, is denoted by Σ∗. We assume
that alphabet Σ is given together with a total order ≤, called lexicographical
order, and extend it in a natural way to the level of words.

Let w = a1 . . . an and v = b1 . . . bm be two words. Then the concatenation of
w and v is defined as w ◦ v = wv = a1 . . . anb1 . . . bm. The alphabet alph(w)
of w is the set of all actions occurring within w, and #a(w) is the number of
occurrences of an action a within w. The set occ(w) of action occurrences of w
comprises all pairs (a, i) such that a ∈ alph(w) and 1 ≤ i ≤ #a(w). The head
(first action occurrences) and the tail (last action occurrences) of a word w are
two sets defined by:

head(w) = {(a, 1) | a ∈ alph(w)} and tail(w) = {(a,#a(w)) | a ∈ alph(w)} .

Let α = (a, i) be an action occurrence in occ(w). The position posw(α) of α
within w is the smallest integer j such that #a(a1 . . . aj) = i, and ℓ(α) = a
is the label of α (the projection onto the first coordinate). We can apply ℓ to
sequences and sets of action occurrences in the usual way, i.e:

ℓ(α1 . . . αn) = ℓ(α1) . . . ℓ(αn) and ℓ({α1, . . . , αn}) = {ℓ(α1), . . . , ℓ(αn)}.

1.2. Posets

The composition of two binary relations, R and Q, over a set X is given by
R ◦ Q = {(a, b)|∃x∈X : aRx ∧ xQb}. Given a relation R ⊆ X × X , R0 is the
identity relation on X , and Rn = Rn−1 ◦R, for all n ≥ 1. The transitive closure
of a relation R is R+ =

⋃

i≥1 R
i.

A directed acyclic graph is a pair dag = (X,R), where X is a finite set and R
is acyclic irreflexive binary relation on X . In a diagrammatical representation,
X is the set of vertices, while R is the set of arcs of dag. If R is transitive, a
pair (X,R) is called a poset and usually denoted by po = (X,≺). Moreover,
every directed acyclic graph dag = (X,R) such that (X,R+) = po is called
po-diagram. Among all the po-diagrams, we can distinguish the smallest one
(i.e. the one with the smallest relation R), denoted by H(po) = (X,≺cov), and
called the Hasse diagram of po. Note that ≺cov can be obtained from ≺ by
simply removing all the arcs implied by the transitivity of ≺; in other words,
≺cov=≺ \ ≺ ◦ ≺. Moreover, if (X,R) is a po-diagram, then ≺cov= R \

⋃

i≥2 R
i.

A linearisation (also called a linear extension) of a poset po = (X,≺) is a
sequence u = x1 . . . xn of distinct elements of po such that X = {x1, . . . , xn}
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and, for all 1 ≤ i < j ≤ n, xj 6≺ xi. Observe that in every linearisation the first
element x1 is one of the minimal elements of (X,≺).

A chain of a poset po = (X,≺) is a sequence x1 . . . xm of distinct elements
of po such that C = {x1, . . . , xm} ⊆ X and, for all 1 ≤ i < j ≤ m, xi ≺ xj .
We say that a chain is maximal if there is no element y ∈ X such that for
every 1 ≤ i ≤ m xi ≺ y or y ≺ xi. Note that in partial order theory a chain
is usually defined as a set {x1, . . . , xm} with above the properties, not as a
sequence. However, such a sequence is unique and makes the definition closer
to the definition of the linearisation.

Both linearisation and maximal chain approximate a partial order by a total
order. The very important and useful fact about the sets of all such objects
is that they constitute initial poset uniquely. In the case of linearisations it
is known as Szpilrajn theorem (Szpilrajn, 1930), while in the case of maximal
chains it is a simple corollary to the Dilworth’s decomposition theorem for par-
tially ordered sets (Dilworth,1950).

1.3. Traces (equivalence classes)

A concurrent alphabet is a pair Ψ = (Σ, dep), where Σ is an ordered alpha-
bet and dep ⊆ Σ × Σ is a reflexive and symmetric dependence relation. The
corresponding independence relation is given by ind = (Σ× Σ) \ dep.

A concurrent alphabet Ψ defines an equivalence relation ≡Ψ identifying
words which differ only by the ordering of independent actions. Two words
w, v ∈ Σ∗ satisfy w ≡Ψ v if there exists a finite sequence of commutations of
adjacent independent actions transforming w into v. More precisely, ≡Ψ is a
binary relation over Σ∗, which is the reflexive and transitive closure of the re-
lation ∼Ψ, such that w ∼Ψ v if there exist u, z ∈ Σ∗ and (a, b) ∈ ind satisfying
w = uabz and v = ubaz.

Equivalence classes of ≡Ψ are called Mazurkiewicz traces (see Diekert and
Rozenberg, 1995; Mazurkiewicz, 1977; Mikulski, 2008), and the trace containing
a given word w (called a representative of the trace) is denoted by [w]. The set
of all traces over Ψ is denoted by Σ∗/≡Ψ

, and the pair (Σ∗/≡Ψ
, ◦) is a (trace)

monoid, where τ ◦ τ ′ = [w ◦ w′], for any words w ∈ τ and w′ ∈ τ ′, is the
concatenation operation for traces. Note that trace concatenation is well-defined
as [w ◦ w′] = [v ◦ v′], for all w, v ∈ τ and w′, v′ ∈ τ ′. Similarly, for every trace
τ = [w] and every action a ∈ Σ, we can define:

alph(τ) = alph(w) occ(τ) = occ(w) #a(τ) = #a(w)
head(τ) = head(w) tail(τ) = tail (w).

2. Poset of a trace

One can represent a trace τ as a poset of action occurrences. More precisely,
po(τ) = (occ(w),≺+

w) is the poset induced by τ , where w is any word belonging
to τ , and ≺w is a binary relation on occ(w) such that α ≺w β if posw(α) <
posw(β) and (ℓ(α), ℓ(β)) ∈ dep. Transitive reductions of (occ(w),≺+

w) and
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(occ(w),≺w) are equal and form the Hasse diagram of the trace τ (namely
(occ(w),≺cov

w )), hence ≺cov
w ⊆ ≺w ⊆ ≺+

w . Moreover, the linearisations of
(occ(w),≺cov

w ) correspond to the representatives of a trace [w]. Together with
an order ≤ on actions this allows for defining the lexicographically minimal
and maximal representatives of the trace [w] (hence minimal and maximal lin-
earisations of (occ(w),≺cov

w )). Such representatives/linearisations are called the
normal forms of a trace, and denoted by minlex and maxlex, respectively.

We define the border of a trace τ , denoted by bord(τ), as the subset of its
tail consisting of the maximal elements of the poset (occ(w),≺+

w). Note that
the notions of head, tail and border of a trace τ could be considered also for its
Hasse diagram G(τ). In this case, the border of G(τ) is the set of nodes without
outgoing arcs, while the head and the tail of G(τ) are the sets of nodes never
preceded or followed, respectively, by a node with the same label. Precisely, for
all paths containing a node V from the head (the tail) of G(τ) all predecessors
(successors) of V have labels different than ℓ(V ). Note that occurrences of
actions have both language theory and graph characterization. Note, further,
that we use the initial Greek letters (α, β, γ) to denote the occurrences of
actions in a trace τ , and V (possibly with indexes) – the occurrences of actions
in Hasse diagram of τ .
For every occurrence α we define the special subset of its predecessors (elements
β in relation ≺+

w with α) called the sources of α. Namely, from every nonempty
set of all predecessors of α with a given label b we choose one representative
β = (b, i). The chosen occurrence is the one with the greatest second coordinate,
i.e. the rightmost (preceding α) occurrence of b. In other words, β is a source
of α if β ≺+

w α and (γ ≺+
w α ∧ γ 6= β ∧ ℓ(γ) = ℓ(β)) ⇒ γ ≺+

w β (see Example 1).
Note that α is never its own source.

dep ind

a b

d c

a b

d c

a1 b1

a2

c1

a3

d1

a1

d1

a2

c1 b1 a3

G(abacda) G(adcaba)

Figure 1. The graphs of examples dependence and independence relations and
Hasse diagrams of the words w1 = abacda and w2 = adcaba

Example 1 We equip the alphabet Σ = {a, b, c, d} with dependence and inde-
pendence relations dep and ind . The graphs of these relations and the Hasse
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diagram of the words w1 = abacda and w2 = (w1)
R = adcaba are depicted in

Fig. 1. In this case the words w1 = abacda and w3 = abcaad are equivalent.
The tail of G(abacda) is {a3, b1, c1, d1}. The sources of the node c1 in this di-
agram are a1 and b1. Note that a1 is the source of c1 while actions a and c
are independent, so a1 and c1 are not in relation ≺w. However, because of the
existence of the occurrence b1 which has to appear after a1 and before c1 we have
a1 ≺+

w c1. Moreover, it is worth noting that the second occurrence of a in the
generating sequence (i.e. abacda) appears before the first occurrence of c, but it
is not a source of c1.

From the diagrammatical point of view, the node V1 is a source of the node
V0 if path from V1 to V0 includes a node (other than V and V0) with label equal
to ℓ(V1). More formally:

Proposition 2.1 Let w be a word over a concurrent alphabet (Σ, dep) and G(w)
be its Hasse diagram. The node V1 is a source of the node V0 if and only if all
paths in G from V1 to V0 do not include nodes (distinct from V1 and V0) labeled
with ℓ(V1).

Proof. At the beginning, let us notice that for all vertices V, V ′, if ℓ(V ) =
ℓ(V ′) then V ≺+

w V ′ or V ′ ≺+
w V . Hence, there exists a path between V and

V ′. Let us consider the set S(V0, a) of all vertices with label a that precedes V0.
Formally, S(V0, a) = {V ;V ≺+

w V0 ∧ ℓ(V ) = a}. Suppose that the set S(V0, a)
is not empty. Otherwise V0 do not have a source labeled with a. Let Vmax be
the greatest element in S(V0, a). Since all nodes from S(V0, a) have the same
label, such an element exists. Moreover, for every other element V ∈ S(V0, a)
we have V ≺+

w Vmax ≺+
w V0 and there is no element of label a which is greater

than Vmax and smaller than V0. This means that Vmax is the only vertex labeled
with a that satisfies the left hand side of equivalence stated in the proposition.
Moreover, Vmax is the only vertex labeled with a that satisfies the right hand
side of those equivalence, which completes the proof. �

3. Hasse diagram data structure

In this section, we introduce a data structure that is useful in operations on
the Hasse diagram of partially ordered set generated by the trace τ = [w]. The
structure consists not only of the graph representing Hasse diagram H(po(τ)),
but also some auxiliary lists and sets, which are used in the proposed procedures
of building and rebuilding Hasse diagrams.

The main extension of the structure of H(po(τ)) is the list that consists of
the references to all nodes contained in tail(w). The order of the elements in the
tail list, denoted by RT , is the inverted order of posw of considered occurrences.
Thereby, the first element of the tail list is the occurrence of the last action
contained in w.

We enhance every node of G = H(po(τ)) by the set of all its existing sources.
In fact, we divide the set of all existing sources of V into two sets – the set of
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sources, which belongs to the tail, denoted by src, and other sources, denoted by
del_src. It is worth noticing that the del_src part of the sources set is necessary
only when we modify an existing diagram, i.e. during the recovery of the tail
structure after removing a node from the border. To create a new node and
append it to the existing diagram we need the sets of sources which belong to the
current tail only. We make use of this remark in the procedure called SIMPLE-
APPEND. For technical reasons, we also add the integer id consistent with the
order of posw of the occurrences. If we never use the REMOVE procedure, then
id for an occurrence α is equal to posw(α).

3.1. Online algorithm for building a Hasse diagram

This section describes the construction of the Hasse diagram. We present an
online algorithm, which for a given word w over a concurrent alphabet (Σ, dep),
computes the Hasse diagram of the trace τ = [w]. To denote the size of a trace
(number of occurrences of single actions) we use the letter n, while the letter k
denotes the size of the alphabet Σ.

In the SIMPLE-APPEND procedure, which is used to build the diagram G
only, we do not take care of the sets del_src. We also update the sets src for the
elements of tail(G) only. We do not clear the sets of sources for the nodes which
are removed from tail(G). Note that, due to Proposition 3.1, to be formulated
in this Section, all arcs adjacent to a node V are present in G before removing V
from tail(G). Let us first introduce the pseudocode of the procedure that builds
a Hasse diagram from an arbitrary representative of a trace.

Algorithm 1: Hasse diagram building

Input: a word w = w1w2 · · ·wn over a concurrent alphabet (Σ, dep)
Output: a graph G representing a Hasse diagram

1 G := empty graph;
2 RT := ∅;
3 for i := 1 to n do
4 SIMPLE-APPEND(G,RT ,wi);

Algorithm 1 is an example of an online algorithm. Its correctness follows
from the correctness of a single step extracted as the procedure SIMPLE-
APPEND. Since the procedure SIMPLE-APPEND has the time complexity of
O(k2) and we call it for every occurrence from linearisation, the time complexity
of the Algorithm 1 is O(nk2).

Operation SIMPLE-APPEND

The procedure SIMPLE-APPEND operates on the graph G, equipped with an
additional structure of the tail, denoted by RT . It appends a new node, labeled
with an action passed as an argument, to the graph G. The most important



706 Ł. Mikulski and M. Piątkowski

fact that stands for this algorithm, describes the role of the tail in appending a
single occurrence to a Hasse diagram, and is formulated in Proposition 3.1.

Lemma 1 Let w be a word over a concurrent alphabet (Σ,dep) and let the graph
G = H(po([w])) be its Hasse diagram. If in the Hasse diagram G there exists an
arc from V1 to V0 then V1 is a source of V0.

Proof. Recall that G is the graph of (occ(w),≺cov
w ). Directly by the definition of

the transitive reduction, if there is an arc (V1, V0) in G, then this arc is the only
path from V1 to V0. Hence V1 is a source of V0. �

Proposition 3.1 Let w be a word over a concurrent alphabet (Σ,dep) and let
the graph G = H(po([w])) be its Hasse diagram. If there exists an arc from the
node V1 to the node V0 = (a,#a(wa)) in G′ = H(po([wa])) then V1 ∈ tail(G).

Proof. Note that {V0} = occ([wa]) \ occ([w]). By Lemma 1, the node V1 is
a source of V0 in G′. Suppose that V1 does not belong to the tail of G. This means
that there is a vertex V2 of the same label as V1, such that V1 ≺+

w V2. Since V1 is a
source of V0, we have V2 ⊀+

wa V0. Therefore, V2 ⊀wa V0 and (ℓ(V2), ℓ(V0)) ∈ ind .
We conclude that there cannot be an arc in G′ between the nodes labeled with
ℓ(V2) = ℓ(V1) and ℓ(V0), in particular: between V1 and V0. The obtained
contradiction proves that V1 has to be the element of the tail of w, which ends the
proof. �

Algorithm 2: SIMPLE-APPEND(G, RT , a)

Input:
• G – Hasse diagram

• RT – tail(G) in reversed order of elements appearances

• a – the letter to be appended to G

1 create V – the node of the next occurrence of a (added to G);
2 V.src := {V };
3 Vprev := FIND(RT ,a);
4 foreach V ′ ∈ RT do
5 if (ℓ(V ′), ℓ(V )) ∈ dep and V ′ /∈ V.src then
6 insert an arc V ′ −→ V ;
7 add V ′.src to V.src;

8 remove Vprev from V.src and RT ;
9 foreach V ′ ∈ RT do

10 remove Vprev from V ′.src;

11 insert V to the front of RT ;

The procedure SIMPLE-APPEND starts with creating a new node V labeled
with an action a that will be added to G. We initialize the set of sources of V
as an empty set. Then we search the tail for the last occurrence labeled with
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a and store it in variable Vprev. We use the operation FIND which gets two
arguments – a set RT of occurrences of distinct labels and an action a. If it
finds an occurrence of a in RT , the node Vprev will be removed from proper data
structures. If there is no node satisfying the desired condition, the procedure
returns NULL value, and nothing has to be removed. This operation can be
done in time complexity of O(log k), where k is the size of alphabet Σ, which
limits the size of RT .

After preparing the new node Vnew, we scan the tail(G). The order of
scanning is opposite to the order of adding the elements to the diagram G. We
decide, if there should be an arc between the scanned vertex and V . Precisely, we
add an arc, if (ℓ(V ), ℓ(Vnew)) ∈ dep and there is no path from V to Vnew in the
part of G constructed already. The adopted order, along with the computation
of the set of sources during the addition of new arcs, prevent us against the
necessity of transitive reduction at the end of the procedure (see Proposition
3.2).

Proposition 3.2 Let w be a word over a concurrent alphabet (Σ,dep) and let
G = H(po([w])) be its Hasse diagram. Then a node V1 is a source of a node V0

and (V1, V0) is not an arc in G, if and only if there exists a node V2 such that
V1 is a source of V2 and (V2, V0) is an arc in G.

⇐: It follows directly from the definition of a transitive reduction. If we have
V1 ≺+

w V2 ≺+
w V0, then the arc (V1, V0) is not present in the transitive reduction.

⇒: If V1 is a source of V0, then V1 ≺+
w V0, so there is a path in G that leads

from V1 to V0.

The last group of instructions is intended to maintain the consistency of the
data structure. First, we remove the vertex Vprev from the tail structure RT
(where it will be replaced by Vnew) and from the sets of sources of all vertices
from tail(G) (as it is no longer in the tail). Finally, we insert the vertex Vnew

into the tail. To preserve the order of elements, the vertex Vnew is put in front
of RT .

The correctness of the Algorithm 2 is straightforward and follows from
Proposition 3.1 and Proposition 3.2. Its time complexity is proportional to
the square of the size of the alphabet Σ. It is determined by the loop defined
in lines 4-7. We iterate through the set of the size limited by the size of the
alphabet Σ (denoted by k), check a simple condition and possibly add a new
arc, and sum up two sets of sizes at most k.

The sample computation of the Algorithm 2 is presented in Table 1 (see
Examples at the end of this paper). In the first column, we can see the lin-
earisations used to build subsequent prefixes of the final diagram, which are
presented in the last column. The remaining two columns present the states
of data structure during the computation. Note that the superscripted id’s
and presented in the third column sets del_src are not used by the SIMPLE-
APPEND procedure.
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3.2. Rebuilding the Hasse diagram

The biggest problem we encounter when using the procedure SIMPLE-APPEND
is the unpreparedness of the utilized data structure to removing of nodes from
the diagram and its rebuilding. It is easy to see that removing the elements
from the border of the diagram (in fact the border of the trace corresponding
to the diagram) should not be difficult.

To satisfy this intuition, we have to prepare our data structure for removing
terminal nodes and restore the consistent state of the data. We use the whole
data structure described at the beginning of this section. It enforces the fun-
damental changes in the procedure of appending an occurrence to the diagram.
The whole pseudocode of extended procedure is presented in the Algorithm 3. It
is supported by another algorithm, called REMOVE, which allows for deleting
nodes present in the border.

Operations EXTENDED-APPEND and REMOVE

The most significant changes in the append algorithm are visible in the data
structure. To fully describe the node, we extend the specification of the node-
object and use not only the set src, but also its complementary set del_src.
We also make use of the emphasized predecessor prev and the serializer id. The
reference to the previous node with the same label is used to restore the pointed
vertex to the tail. During the addition of the node V that might be deleted
from G in the future, we update the src sets of all vertices from RT . To ensure
the reversibility of this action, we store in the sets del_src the sources that are
deleted by the procedure SIMPLE-APPEND. Observe that the field prev of an
object V in Algorithm 3 plays the role of a local variable vprev in Algorithm 2.

It is worth noting that, according to the definition of a source, the newly
created vertex may have sources that are not present in the current tail, but
are important from the point of view of the procedure REMOVE (see Table 2
in the Examples at the end of this paper). The extension responsible for this
computation is presented in lines 13-20. We scan there all sources of the direct
source of the newly added node to find the last occurrence of every action. It is
worth mentioning that in the set del_src there may exist only one node with
the fixed label. At the end of the procedure EXTENDED-APPEND we have to
take care of the consistency of the data. Therefore, we delete from del_src of
V all nodes with the same label as those stored in src.

The correctness of the procedure EXTENDED-APPEND follows from the
correctness of its base version SIMPLE-APPEND and Proposition 3.2. The
most significant, in terms of the computational complexity, is the loop presented
in lines 9-20. It performs at most k iterations. In each iteration we may execute
another loop with at most k repetitions. This loop performs several operations
of removing and inserting with respect to the set of the size of at most k = |Σ|.
Such operations can be done in the time complexity of log k, hence the whole
procedure has the time complexity of O(k2 log k).
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Algorithm 3: EXTENDED-APPEND(G, RT , a)

Input:
• G – Hasse diagram

• RT – tail(G) in reversed order of element appearances

• a – the letter to be appended to G

Output: V – the node appended to G
1 create V – the node of next occurrence of a in G;
2 if RT = ∅ then
3 V.id := 1;

4 else
5 V.id := FIRST(RT ).id+1;

6 V.src := {V };
7 V.del_src := ∅;
8 V.prev :=FIND(RT ,a);
9 foreach V ′ ∈ RT do

10 conditionally insert an arc: V ‘ ❀ V ;

11 remove V.prev from RT and V.src;
12 foreach V ′ ∈ RT do
13 move V.prev from V ′.src to V ′.del_src

14 foreach V ′ ∈ V.del_src do
15 if FIND(V.src, ℓ(V ′)) 6= null then
16 remove V ′ from V.del_src;

17 insert V to front of RT ;
18 return V ;

The last algorithm presented in this section is the procedure REMOVE. It
operates, like SIMPLE-APPEND and EXTENDED-APPEND, on the graph G
and its reversed tail RT . The last argument is the node V to be deleted from G.
The procedure works properly only if V comes from the border of G. Removing
any other node requires recomputing the whole diagram and updating the data
structures.

After removing the node V from the diagram G, the previous appearance of
the action ℓ(V ) (if such an action exists in the diagram), stored in V as prev,
should be inserted to the tail of the modified diagram. All arcs adjacent to V
are removed with V . In such a way, we achieve a correct Hasse diagram. We
only have to take care of the additional data structures to satisfy all constraints
required by the algorithm.

The serializer id, stored in the node V.prev, is used to put the node in correct
place inside the tail structure RT . Note that all sources of V.prev are stored
in src and del_src of this node. We need to move all sources, which are not
in RT , into set del_src and these contained in the tail into set src (lines 5-6).
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Algorithm 4: Conditional part of the main loop of EXTENDED–
APPEND

1 if (ℓ(V ′), ℓ(V )) ∈ dep and V ′ /∈ V.src then
2 insert an arc V ′ −→ V ;
3 add V ′.src to V.src;
4 foreach V ′′ ∈ V ′.del_src do
5 Vd := FIND(V.del_src, ℓ(V ′′));
6 if Vd 6= null then
7 if Vd.id < V ′′.id then
8 remove Vd from V.del_src;
9 insert V ′′ to V.del_src;

10 else
11 insert V ′′ to V.del_src;

The last operation is the fixing of the data stored in the other nodes from RT .
We have to move V.prev from del_src to src whenever it is necessary.

The correctness of the procedure REMOVE is straightforward, and follows
from the definition of the sets of sources. The time complexity is also obvious.
All operations presented in lines 1 and 4-8 may be done in the time complexity
of O(k), hence the time complexity of the procedure REMOVE is also O(k).

See Table 2 in Examples at the end of this paper for an example of using the
procedures REMOVE and EXTENDED-APPEND to rebuild a Hasse diagram.
It is worth observing how the deleted sources are restored after removing the
second occurrence of the action a.

4. Generation of all linearisations of the trace

Let τ be a trace over a concurrent alphabet (Σ, dep). Recall that by linearisation
of τ we mean a possible ordering of its Hasse diagram nodes (Vi1 , Vi2 , . . . , Vin).

For a word w the operation reverse (denoted by wR) is defined in a usual
way: (abcda)R = adcba. For a directed graph G its reverse, denoted by (G)R, is
defined as reversing the direction of each arc of G. There is also a straightforward
correspondence between nodes of G(w) and G(wR). We can identify the first
occurrence of the action a in w with its last occurrence in wR, the second with
last but one, and so on. Formally, the occurrence α = (a, i) in w is identified
with αR = (a,#a(w) − i + 1) in wR. See Fig. 1, shown before, for an example
of a directed graph and its reverse.

Remark 1 Let G be a directed acyclic graph. Then, directly from the definition:
head(G) = tail((G)R) and tail(G) = head((G)R).

The following fact will be crucial for the correctness of the algorithms pre-
sented further in this section.
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Algorithm 5: REMOVE(G, RT , V )

Input:
• G – Hasse diagram

• RT – tail(G) in reversed order of elements appearances

• V – the node from BORDER(G) to be removed

1 remove V from RT ;
2 Vp := V.prev;
3 if Vp 6= null then
4 insert Vp to RT with respect to order of id;
5 move nodes (Vp.src ∩RT ) from Vp.src to Vp.del_src;
6 move nodes (Vp.del_src ∩RT ) from Vp.del_src to Vp.src;
7 foreach V ′ ∈ RT do
8 move Vp from V ′.del_src to V ′.src

Lemma 2 Let w be a word over a concurrent alphabet (Σ, dep) and G(w) =
H(po([w])) be its Hasse diagram. Then the reverse of the Hasse diagram G(w)
is the Hasse diagram of the reverse of w, namely (G(w))R ⋍ G(wR). Moreover,
V is the minimal vertex in G(w) if and only if the corresponding vertex V R is
maximal in G(wR).

Proof. Since posw(α) < posw(β) implies that poswR(β) < poswR(α) and vice
versa, we have α ≺+

w β if and only if βR ≺+
wR αR. By the definition of the graph

(G(w))R , we have that (V1, V2) is and arc in G(w) if and only if (V2, V1) is an arc
in (G(w))R . Therefore, we get the (G(w))R ⋍ G(wR) with a vertex V = (a, i) in
(G(w))R corresponding to the vertex V R = (a,#a(w) − i + 1) in G(wR). The
second statement is obvious, since min(occ(w),≺+

w) = max(occ(wR),≺+
wR). �

Data structures

The main idea of the algorithms presented in this section is the partition of the
current linearisation w of a trace τ = [w] into the prefix wpref and the suffix
wsuff . At each step of the computation we process a single action a and move
the node corresponding to a from wpref to wsuff or vice versa. Therefore, the
presented algorithms need some additional data structures.

We use the Hasse diagram G of the prefix wpref and the Hasse diagram G′

of the reversed suffix (wsuff )R, called the dual graph. The prefix of current
linearisation is represented by the list L of nodes of G.

Moreover, we use the notion of a graph border. Recall that for a directed
graph G, its border bord(G) is defined as a subset of tail(G) consisting of the
nodes having no outgoing arcs. We use the auxiliary procedure COMPUTE-
BORDER, which, for a given directed graph G (more precisely for tail(G)),
computes bord(G) by choosing nodes with out-degree zero. Since the size of
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tail(G) is not greater than k, the procedure COMPUTE-BORDER performs at
most k operations.

Procedures MINSUFF and MAXSUFF

The procedure MINSUFF constructs the lexicographically minimal suffix of the
current linearisation from the dual graph G′. We process the border of G′ and
consecutively choose the node Vmin with the lexicographically smallest label.
The node Vmin is then removed from G′. A new node with a label ℓ(Vmin) is
appended to G and the list L, which is the intermediate state of the created
suffix. We use procedures REMOVE and EXTENDED-APPEND described in
the previous section. See Algorithm 6 for the technical details.

Algorithm 6: MINSUFF(G, RT , G′, RT ′)

Input:
• G, G′ – Hasse diagrams of current prefix and its reverse

• RT , RT ′ – reversed tail(G) and tail(G′)

Output: L – lexicographically minimal reversed linearisation of G′

1 L := ∅;
2 while G′ not empty do
3 BRD := COMPUTE-BORDER(RT ′);
4 Vmin := MIN(BRD);
5 REMOVE(G′, RT ′, Vmin);
6 Vnext := EXTENDED-APPEND(G, RT , ℓ(Vmin));
7 insert Vnext to back of L;

8 return L;

The correctness of Algorithm 6 follows from Lemma 2. The dual graph G′

is the Hasse diagram of the reversed suffix of current linearisation. We remove
only the nodes from the border of G′, hence the structure of Hasse diagram is
preserved. Moreover, the method of node selection ensures that the constructed
suffix will be lexicographically minimal.

Recall that by k we denote the size of the alphabet Σ and by n – the
length of the processed word, in the case considered here the processed suf-
fix. The procedure MINSUFF performs at most n repetitions of the while-loop
(lines 2-7). In each iteration, the most time consuming operation is the proce-
dure EXTENDED-APPEND. Therefore, the time complexity of Algorithm 6 is
O(nk2 log k).

The procedure MAXSUFF can be defined in a similar way as MINSUFF. The
only difference appears in the line 4 of the algorithm. We choose the maximal
element from the border of the dual graph instead of the minimal one.



Visualisation of concurrent processes 713

Procedures MINLEX and MAXLEX

The procedure MINLEX generates lexicographically minimal linearisation of
the trace τ using its Hasse diagram G and a current linearisation L of τ . First,
we process all components of L moving them from the diagram G to the dual
diagram G′. Next, we use the procedure MINSUFF to generate lexicographically
minimal suffix of the empty word λ, see Algorithm 7 for details.

The procedure MAXLEX, which computes lexicographically maximal lin-
earisation of τ , is defined in a similar way using the procedure MAXSUFF in
line 8 of Algorithm 7. The correctness and the time complexity of MINLEX
and MAXLEX (namely O(nk)) follow directly from the correctness and the
time complexity of MINSUFF and MAXSUFF.

Algorithm 7: MINLEX(G, RT , L)

Input:
• G – Hasse diagram

• RT – reversed tail(G)

• L – current linearisation

Output: L – list of nodes of lexicographically minimal linearisation of G

1 G′ := empty graph;
2 RT ′ := ∅;
3 while L 6= ∅ do
4 Vl := last element of L;
5 remove Vl from L;
6 REMOVE(G, RT , Vl);
7 EXTENDED-APPEND(G′ , RT ′, ℓ(Vl));

8 L := MINSUFF(G, RT , G′, RT ′);
9 return L;

Procedures NEXT-LINEARISATION and PREV-LINEARISATION

The procedure NEXT-LINEARISATION allows for browsing the set of all lin-
earisations of the trace τ in the similar way as in the SEPA algorithm (see
Knuth, 2005). The main idea of the algorithm is a modification of the suffix of
an arbitrary linearisation L0 so as to obtain L1 – the next (in lexicographical
order) linearisation of τ .

The correctness of the procedure NEXT-LINEARISATION is implied by
the following facts, which describe the utilized properties of the border and
language-theoretical structure of the lexicographically consecutive linearisations
of τ .
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Lemma 3 Let w be a word over concurrent alphabet (Σ,dep) and G(w) be its
Hasse diagram. Then

V1, V2 ∈ bord(G(w)) ⇒ (ℓ(V1), ℓ(V2)) ∈ ind .

Proof. Let V1 and V2 be two nodes belonging to bord(G(w)). Suppose that
(ℓ(V1), ℓ(V2)) ∈ dep. Then, by the definition of relation ≺w, we have V1 ≺w V2

or V2 ≺w V1. Therefore, one of them cannot be maximal in (occ(w),≺+
w),

hence cannot belong to the border. The obtained contradiction proves that
(ℓ(V1), ℓ(V2)) ∈ ind . �

Theorem 1 Let u = pau′ and v = pbv′ be two subsequent representatives of a
trace τ over a concurrent alphabet (Σ,dep), for a 6= b ∈ Σ, and p, u′, v′ ∈ Σ∗.
Then α = (a,#a(p) + 1) and β = (b,#b(p) + 1) are two elements of bord(u′Ra)
and a, b are subsequent among the set ℓ(bord(u′Ra)). Moreover, u′ is in maxlex
normal form and v′ is in minlex normal form.

Proof. Let u = pau′ and v = pbv′ be two subsequent representatives of
the trace τ . Without loss of generality we can assume that p = λ. Therefore,
α = (a, 1) and β = (b, 1). The equivalence of u and v implies that (a, b) ∈ ind .
Assume that there is another element γR of label c in bord(uR) = bord(u′Ra)
such that a < c < b. By the definition of the border, γR is maximal in uR.
Therefore, the occurrence γ is minimal in u and there exists a linearisation of
u starting with c. It is the contradiction with the fact that u and v are lexico-
graphically consecutive linearisations of τ . Hence, actions a and b are indeed
subsequent in the set ℓ(bord(u′Ra)). Suppose that u′ is not the maximal element
among the representatives of a trace [u′]. Then there exists a word u′′ equivalent
with u′ and greater than u′. Hence, au′′ is equivalent to au′ and bv′. Moreover,
au′′ would be located between au′ and bv′, which proves the lexicographical
maximality of u′. Similarly, we prove that v′ is the minimal element among the
representatives of a trace [v′]. �

We start processing the linearisation L0 by consecutively removing its last
element Vl from the tail of the graph G and inserting a new element with the
label ℓ(Vl) to the dual graph G′. After each step we examine bord(G′), containing
actions, which can be chosen as a next element of the linearisation. We stop
this operation if either L0 is empty or we found in bord(G′) an element V ′ with
a label greater than ℓ(Vl).
Due to Theorem 1, the emptiness of L0 means that there is no possibility of
finding a greater (with respect to the lexicographical order) linearisation of the
trace τ . In this case the algorithm returns the null value. Otherwise, we pick Vn

– the smallest element of bord(G′) satisfying the condition ℓ(Vn) > ℓ(Vl), remove
it from G′ and insert to G the new node with label ℓ(Vn). Finally, using the
dual graph G′ and the procedure MINSUFF, we generate the lexicographically
smallest suffix starting with Vn. See Algorithm 8 for details.

Remark 2 In algorithms described above the border of the graph does not have
to be computed at each step. It can be stored as a local variable and updated
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Algorithm 8: NEXT-LINEARISATION(G, RT , L)

Input:
• G – Hasse diagram

• RT – reversed tail(G)

• L – current linearisation

Output: L – list of nodes of the lexicographically next linearisation of G

1 G′ := empty graph;
2 RT ′ := ∅;
3 repeat
4 if L = ∅ then
5 return null;

6 V := last element of L;
7 REMOVE(G, RT , V );
8 V ′ := EXTENDED-APPEND(G′ , RT ′, ℓ(V ));
9 BRD := COMPUTE-BORDER(RT ′);

10 until MAX(BRD) 6= V ′;
11 Vsup := smallest node from BRD greater than V ′;
12 REMOVE(G′, RT ′, Vsup);
13 Vnext := EXTENDED-APPEND(G, RT , ℓ(Vsup));
14 insert Vnext to back of L;
15 append MIN-SUFF(G, RT , G′, RT ′) to L;
16 return L;

after appending or removing each node. If we append a node V to the graph
G, we have to remove from bord(G) all direct sources of V . On the other hand,
if we remove a node V from G, we must add to bord(G) each direct source of
V with no outgoing arc. Since every node has at most k sources and tail(G)
has the size at most k, both approaches have the same time complexity, namely
O(k).

Similarly as in the procedure MINSUFF, the repeat-loop in lines (3-10)
has the time complexity of O(nk2 log k). It performs at most n iterations. In
each iteration the most time consuming operation is once more the procedure
EXTENDED-APPEND. None of the operations provided in lines 11-15 is more
expensive than the procedure MINSUFF. Hence, the time complexity of Algo-
rithm 8 is O(nk2 log k).

Example 2 Recall the concurent alphabet from Example 1 and let τ = [abacdb].
Then τ has twelve linearisations:

abacbd, abacdb, abadcb, abcabd, abcadb, abcdab,

abdacb, abdcab, adbacb, adbcab, dabacb, dabcab.
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The computation of the linearisation abdacb from the linearisation abcdab using
algorithm NEXT-LINEARISATION is shown in Table 3 (see Examples at the
end of this paper).

5. Practical implementation

The algorithms described in this paper were implemented in the Java application
DiaDem. Its graphical layer utilizes the open source library: Java Universal
Network/Graph Framework (see O’Madadhain, Fisher and Nelson, 2010). The
primary functionality of the application is the graphical presentation of the
Hasse diagram of the trace τ over a concurrent alphabet (Σ, dep).

The graph of the concurrent alphabet is displayed in the top right panel
and could be defined or redefined by the user. For changing the size of an
alphabet one can use two buttons, Add and Del, visible on the top left panel.
The provided table of relation dep may be used to set or reset this relation. The
dependence between letters can be determined by selecting appropriate fields on
this table. After clicking the button Update, the resulting concurrent alphabet
is visualised in the top right panel and used by the application. The possible
size of the alphabet Σ is in the range from 2 to 26, but this limitation arises
from the needs of presentation clarity only. Since the size limit of Σ is not
enforced by the algorithms it is possible, using the same source code, to remove
this restriction by changing the set of used labels (i.e. using letters with indexes
a1, a2, etc.).

The considered trace τ is defined by an arbitrary representative w, which
should be placed in the text field located below the dependence relation graph.
The Hasse diagram of τ = [w] is drawn in the bottom panel. After editing the
content of the text field and clicking the button Update, the Hasse diagram of τ
is either constructed from scratch (if the structure of the alphabet has changed),
or the necessary part of the diagram is rebuild (if only the suffix of the processed
linearisation has changed). The view of described functionality is depicted in
Fig. 2.

Furthermore, application DiaDem allows for previewing the linearisations of
the trace τ , which are presented in two ways: as the content of the text field
used to define τ , and as the visualisation depicted on the Hasse diagram G(τ).
The graphical illustration is done by changing the color and thickness of the arcs
of G(τ). Moreover, if two consecutive elements of the presented linearisation, V1

and V2, are not connected by an arc in G(τ), a virtual arc (V1, V2) is added to
G(τ). Such virtual arc is drawn as a dashed line and is used for the linearisation
presentation only, hence it does not affect the Hasse diagram structure. The
user turns this additional graphical functionality on or off using the checkbox
Show linearisation.

Initially, the linearisation given by the user is presented. Using buttons Next
and Prev we can iterate through the set of all linearisations of the trace τ in the
lexicographical order. Pressing one of these buttons changes the value displayed
in the text field. Moreover, if the visualisation of linearisation is marked to be
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Figure 2. An example screen from the application DiaDem, presenting the basic
functionality – a Hasse diagram generated for a given word and dependence
relation

shown, the diagram with emphasized (and possibly additional) arcs is redrawn.
See Fig. 3 for an example of the linearisation presentation.

The relation structure viewer (top right panel) and the Hasse diagram viewer
(bottom pannel) can be used in two different modes: the transforming mode,
which allows for moving (mouse), rotating (shift+mouse) or transforming (ctrl+
mouse) the whole graph, and the picking mode, in which each node could be re-
located separately (using drag&drop technique). Such behaviour can be set (for
the active panel only) by pressing the T key on the keyboard (for transforming
mode) or the P key (for picking mode). A panel becomes active when the user
clicks on it.

The algorithms described in Section 4 process the set of all linearisations of
the trace τ by partially destroying and rebuilding its Hasse diagram G. They
utilize procedures EXTENDED-APPEND and REMOVE, defined in Section 3.
Although such an approach is very useful from the theoretical point of view,
DiaDem preserves the structure of the diagram G. The procedures remove and
append are implemented as virtual operations. We have to remember the current
prefix L of the processed linearisation and the border bord of the dual graph only.
The computation of the next linearisation starts with an empty border, which
may be updated by the virtual operations remove and append. Those operations
do not affect the structure of the Hasse diagram. It is worth mentioning that
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Figure 3. An example screen from the application DiaDem, presenting a lineari-
sation of the trace related to the displayed representative

shifting the border, which demarcates two virtual parts of the graph, is done
using the vertical sweep line technique (see Cormen, Leiserson, Rivest and Stein,
2001). The approach, which utilizes the virtual operations on the diagram, does
not affect the time complexity of the whole algorithm.

5.1. Other solutions – a short survey

There are several tools, related to the Hasse diagrams, available in the World
Wide Web. Most of them are directly related to the theory of partially ordered
sets. In most of them one can visualise the structure of computed transitive
reduction of a partial order.

We start with a few free tools that are available online. One of the simplest
is JavaScript Lattice Drawing Program (see Snow, 2006). It shows the visual
structure of posets, but is limited to the provided examples only. Any extension
would require changes in the program source code.

The Interactive Poset and Lattice Drawing Java Applet (see Jipsen, 2006)
is another interesting tool for drawing the Hasse diagram of a given poset. The
structure of the considered poset must be defined by the web page parameters
encoded in html file. The reorganization of the structure of currently drawn
poset is impossible.

Another tool is the Lattice drawing applet (see Freese, 2004b). It allows
for drawing the Hasse diagram of a poset, but is limited to lattices only (i.e.
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posets in which any two elements have a unique supremum and a unique infi-
mum). The editing of the structure of a drawn poset is possible, but requires
the preparation of file describing the lattice. The webpage provides also some
examples of lattices, which are helpful in the preparation of a new example.

The last example of an online tool is The Sage Notebook, see Stein (2004).
In contrast to the aforementioned applications, Sage is a very powerful mathe-
matical software system. It allows for defining the poset structure, make some
operations on it, for example compute its transitive reduction, and finally draw
the graph. The interface is given as a command line, which forces user to learn
a very sophisticated syntax. The method of drawing may be fixed by setting
proper parameter values. Especially, there are three layouts available. However,
there is no possibility of changing the shape of the displayed graph.

The Sage system can be also used as a standalone application. There are also
other mathematical environments with similar capabilities. One has to mention
Macaulay2, see Grayson et al. (2013), a simple but powerful software system
for research in algebraic geometry. A more sophisticated, but also free tool is
MuPAD, especially with Combinat package, see Zimmerman (2001). One can
not forget about the famous and widely used commercial mathematical soft-
wares, such as Maple (with Posets Package, Stembridge 2009), Mathematica
(with Package for Studying Posets, see Greene 2010), and Matlab, see Math-
Works (2013) (which seems to have no support for posets operations). It is
worth noting that, despite the fact that they use different command sets, all of
them are supported by specialised interfaces of the Sage system. However, only
Sage has the web interface.

It is worth noting that partial orders are used in the field of formal concept
analysis (see Ganter and Wille, 1999) and known as a Hasse Diagram Technique.
There is a nice, free tool called DART (see Talete, 2008), which allows for
analyzing the previously prepared data, in particular it draws Hasse diagrams
for visualization.

As far as we know, there is not only no free useful tool for studying this topic
from the point of view of the trace theory, but also none of the existing tools
provides the possibility of previewing the linearisations of the visualised poset.
The application DiaDem allows for drawing the Hasse diagram of the trace τ
and for iterating through the set of all representatives of τ in the lexicographical
order. Moreover, since every poset can be generated by a word over a concurrent
alphabet (see Mikulski, Piątkowski and Smyczyński, 2011), it could also be used
in the case of the arbitrary partial orders. Therefore, the provided visualisation
may be utilized in the studies over partially ordered sets.

6. Summary and final remarks

In this paper we presented several algorithms related to the behavior of concur-
rent systems. In particular, we gave detailed description of two methods for con-
struction of a Hasse diagram (APPEND and EXTENDED-APPEND), together
with the FIND procedure. As a complement to the EXTENDED-APPEND,
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we provided the algorithm REMOVE. It is worth noting that APPEND may
be used to build a Hasse diagram only, while the pair EXTENDED-APPEND
and REMOVE allows not only for constructing but also for reconstructing an
existing diagram.

The reconstruction process is utilized by the procedures used for browsing
all linearisations of a presented poset. At the end of Section 4 we introduced
algorithms NEXT-LINEARISATION and PREV-LINEARISATION which, for
a given linearisation, allow for computing the next one in the lexicographical
order (respectively the previous one). Those two methods make use of the proce-
dures MINSUFF and MAXSUFF, which append the lexicographically minimal
or maximal possible suffix to a given prefix of a linearisation. By applying them
to the empty prefix we obtain the procedures MINLEX and MAXLEX that
construct minimal and maximal linearisations.

We investigate these algorithms from the point of view of the causal depen-
dencies of the single atomic actions. Namely, we provide the efficient tools for
online construction and modification of the Hasse diagrams, which describe the
causal partial order of actions. The described algorithms may be, in a straight-
forward way, adapted for more complex concurrency models, see for example
Mikulski and Koutny (2011).

The natural further direction of investigations in this area is to provide
an algorithm, which generates all nonequivalent traces of a given length. An
important property of such generation would be the uniqueness of the trace
causal relation structure. Such an algorithm should output the diagram of a
fixed shape only once during the whole generation procedure. Moreover, we
plan to extend functionality of the application by adding modules related to
chains and antichains.

There are also some possible improvements of the provided application.
From the theoretical point of view, one can try to improve the time complexity
of the operation EXTENDED-APPEND. The cost of such improvement may be
a worse time complexity of the operation REMOVE (acceptable up to O(k2)).
Moreover, a better method of the graph nodes positioning may be implemented.
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Examples

In this section we provide a few examples to demonstrate the running details
of the presented algorithms. We start with an illustration of Hasse diagram
generation for a given concurrent word using algorithm EXTENDED-APPEND
(see Table 1). Next, we show how such a diagram can be transformed using
procedures REMOVE and EXTENDED-APPEND (see Table 2). Finally we
show how the structure of Hasse diagram is utilized to compute next (in lexico-
graphical order) linearisation of related concurrent word (see Table 2).

Current prefix Sources Deleted Hasse
and reversed tail sources diagram
a

[

a
(1)
1

] a
(1)
1 : [a

(1)
1 ] a

(1)
1 : ∅

a
(1)
1

ab
[

b
(2)
1 , a

(1)
1

]

b
(2)
1 : [a

(1)
1 , b

(2)
1 ]

a
(1)
1 : [a

(1)
1 ]

b
(2)
1 : ∅

a
(1)
1 : ∅ a

(1)
1 b

(2)
1

aba
[

a
(3)
2 , b

(2)
1

]

a
(3)
2 : [b

(2)
1 , a

(3)
2 ]

b
(2)
1 : [b

(2)
1 ]

a
(3)
2 : ∅

b
(2)
1 : [a

(1)
1 ] a

(1)
1 b

(2)
1

a
(3)
2

abac
[

c
(4)
1 , a

(3)
2 , b

(2)
1

]

c
(4)
1 : [b

(2)
1 , c

(4)
1 ]

a
(3)
2 : [b

(2)
1 , a

(3)
2 ]

b
(2)
1 : [b

(2)
1 ]

c
(4)
1 : [a

(1)
1 ]

a
(3)
2 : ∅

b
(2)
1 : [a

(1)
1 ]

a
(1)
1 b

(2)
1

a
(3)
2

c
(4)
1

abacd
[

d
(5)
1 , c

(4)
1 , a

(3)
2 , b

(2)
1

]

d
(5)
1 : [d

(5)
1 ]

c
(4)
1 : [ b

(2)
1 , c

(4)
1 ]

a
(3)
2 : [b

(2)
1 , a

(3)
2 ]

b
(2)
1 : [b

(2)
1 ]

d
(5)
1 : ∅

c
(4)
1 : [a

(1)
1 ]

a
(3)
2 : ∅

b
(2)
1 : [a

(1)
1 ]

a
(1)
1 b

(2)
1

a
(3)
2

c
(4)
1d

(5)
1

abacda
[

a
(6)
3 , d

(5)
1 , c

(4)
1 , b

(2)
1

]

a
(6)
3 : [b

(2)
1 , a

(6)
3 ]

d
(5)
1 : [d

(5)
1 ]

c
(4)
1 : [b

(2)
1 , c

(4)
1 ]

b
(2)
1 : [b

(2)
1 ]

a
(6)
3 : ∅

d
(5)
1 : ∅

c
(4)
1 : [a

(1)
1 ]

b
(2)
1 : [a

(1)
1 ]

a
(1)
1 b

(2)
1

a
(3)
2

c
(4)
1

d
(5)
1

a
(6)
3

Table 1. The example of the Hasse diagram generation for the word abacda. The
structure Deleted sources is used only by the algorithm EXTENDED-APPEND.
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Performed operation Sources Deleted Hasse
and reversed tail sources diagram

G(abacda)

[

a
(6)
3 , d

(5)
1 , c

(4)
1 , b

(2)
1

]

a
(6)
3 : [b

(2)
1 , a

(6)
3 ]

d
(5)
1 : [d

(5)
1 ]

c
(4)
1 : [b

(2)
1 , c

(4)
1 ]

b
(2)
1 : [b

(2)
1 ]

a
(6)
3 : ∅

d
(5)
1 : ∅

c
(4)
1 : [a

(1)
1 ]

b
(2)
1 : [a

(1)
1 ]

a
(1)
1 b

(2)
1

a
(3)
2

c
(4)
1d

(5)
1

a
(6)
3

REMOVE
(

a
(6)
3

)

[

d
(5)
1 , c

(4)
1 , a

(3)
2 , b

(2)
1

]

a
(3)
2 : [b

(2)
1 , a

(3)
2 ]

d
(5)
1 : [d

(5)
1 ]

c
(4)
1 : [b

(2)
1 , c

(4)
1 ]

b
(2)
1 : [b

(2)
1 ]

a
(3)
2 : ∅

d
(5)
1 : ∅

c
(4)
1 : [a

(1)
1 ]

b
(2)
1 : [a

(1)
1 ]

a
(1)
1 b

(2)
1

a
(3)
2

c
(4)
1d

(5)
1

REMOVE
(

a
(3)
2

)

[

d
(5)
1 , c

(4)
1 , b

(2)
1 , a

(1)
1

]

a
(1)
1 : [a

(1)
1 ]

d
(5)
1 : [d

(5)
1 ]

c
(4)
1 : [b

(2)
1 , c

(4)
1 , a

(1)
1 ]

b
(2)
1 : [b

(2)
1 , a

(1)
1 ]

a
(1)
1 : ∅

d
(5)
1 : ∅

c
(4)
1 : ∅

b
(2)
1 : ∅

a
(1)
1 b

(2)
1

c
(4)
1d

(5)
1

APPEND
(

a
)

[

a
(6)
2 , d

(5)
1 , c

(4)
1 , b

(2)
1

]

a
(6)
2 : [b

(2)
1 , a

(6)
2 ]

d
(5)
1 : [d

(5)
1 ]

c
(4)
1 : [b

(2)
1 , c

(4)
1 ]

b
(2)
1 : [b

(2)
1 ]

a
(6)
2 : ∅

d
(5)
1 : ∅

c
(4)
1 : [a

(1)
1 ]

b
(2)
1 : [a

(1)
1 ]

a
(1)
1 b

(2)
1

a
(6)
2

c
(4)
1d

(5)
1

APPEND
(

b
)

[

b
(7)
2 , a

(6)
2 , d

(5)
1 , c

(4)
1

]

a
(6)
2 : [b

(2)
1 , a

(6)
2 ]

d
(5)
1 : [d

(5)
1 ]

c
(4)
1 : [c

(4)
1 ]

b
(7)
2 : [b

(7)
2 , a

(6)
2 , c

(4)
1 ]

a
(6)
2 : [b

(2)
1 ]

d
(5)
1 : ∅

c
(4)
1 : [a

(1)
1 , b

(2)
1 ]

b
(7)
2 : ∅

a
(1)
1 b

(2)
1

a
(6)
2

c
(4)
1d

(5)
1

b
(7)
2

Table 2. The example of the Hasse diagram modification using operations
EXTENDED-APPEND and REMOVE.
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Hasse diagram Prefix and Suffix and Dual graph
reversed tail reversed tail

a
(1)
1 b

(2)
1

a
(3)
2

c
(4)
1d

(5)
1

b
(6)
2

abacdb
[

b
(6)
2

,d
(5)
1

, c
(4)
1 , a

(3)
2

]

λ
[

∅
]

a
(1)
1 b

(2)
1

a
(3)
2

c
(4)
1d

(5)
1

a b a c d
[

d
(5)
1

, c
(4)
1

, a
(3)
2

, b
(2)
1

]

b
[

b
(1)
1

]

b
(1)
1

a
(1)
1 b

(2)
1

a
(3)
2

c
(4)
1

a b a c
[

c
(4)
1

, a
(3)
2

, b
(2)
1

]

d b
[

d
(2)
1

,b
(1)
1

]

b
(1)
1

d
(2)
1

a
(1)
1 b

(2)
1

a
(3)
2

a b a
[

a
(3)
2

, b
(2)
1

]

c d b
[

c
(3)
1

,d
(2)
1

, b
(1)
1

]

b
(1)
1

d
(2)
1

c
(3)
1

a
(1)
1 b

(2)
1

a
(3)
2

d
(4)
1

a b a d
[

d
(4)
1

, a
(3)
2

, b
(2)
1

]

c b
[

c
(3)
1

, b
(1)
1

]

b
(1)
1 c

(3)
1

a
(1)
1 b

(2)
1

a
(3)
2

d
(4)
1 c

(5)
1

a b a d c
[

c
(5)
1

,d
(4)
1

, a
(3)
2

, b
(2)
1

]

b
[

b
(1)
1

]

b
(1)
1

a
(1)
1 b

(2)
1

a
(3)
2

c
(5)
1d

(4)
1

b
(6)
2

a b a d c b
[

b
(6)
2

, c
(5)
1 ,d

(4)
1

, a
(3)
2

]

λ
[

∅
]

Table 3. The exemplary computation of the algorithm NEXT-
LINEARISATION for the trace τ from Example 2.


