Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Concrete durability evaluation in new built pavement sections of expressways in Poland
Języki publikacji
Abstrakty
W artykule przedstawiono przegląd zagadnień trwałości betonu zastosowanego na kilku odcinkach nowych dróg ekspresowych w Polsce. Dwuwarstwowe nawierzchnie z betonu niezbrojonego, dyblowane i kotwione, wykonano w technologii ślizgowej. Trwałość betonu w warunkach wpływu mrozu oraz oddziaływania soli odladzających określono na podstawie oceny stopnia napowietrzenia, w tym wskaźnika rozmieszczenia porów i zawartości mikroporów, oznaczonej na próbkach rdzeniowych wywierconych z wykonanych nawierzchni. Stwierdzono drobne pęcherzyki powietrza wskazuje na optymalne efekty podwyższonej mrozoodporności bez wyraźnie negatywnego wpływu na wytrzymałość. Ustalono korelację zawartości mikroporów w stwardniałym betonie a wynikami pomiarów w mieszance betonowej za pomocą Super Air Meter. Ocenę trwałości betonu w środowisku o dużej wilgotności, w połączeniu z obciążeniem zmęczeniowym ruchem drogowym i oddziaływaniem roztworów soli odladzających, przeprowadzono wykorzystując nowe zasady doboru kruszyw niereaktywnych. Dobór kruszywa na podstawie analizy petrograficznej oraz oceny ekspansywnego zachowania się betonu został w pełni potwierdzony wynikami badań betonu formowanego na budowie, Przeprowadzono je w symulowanych warunkach eksploatacyjnych z zewnętrznym oddziaływaniem roztworu chlorku sodu. Omówiono przydatność przyjętej metody badań trwałości do poszukiwania alternatywnych materiałów do budowy nawierzchni.
A review of concrete durability at several sections of the new built expressways in Poland is presented. Two-layers jointed plain concrete pavements were constructed using a slip-form technology. For freeze-thaw and deicing salts durability of concrete the specified air void properties, including the spacing factor and the microvoids content, was evaluated on core specimens drilled from the constructed pavements. The observed system of fine air voids indicates optimal features for increased frost and scaling resistance without a significant negative impact on strength. The correlation was established between the microvoid content in the hardened concrete and the data of the Super Air Metre on fresh concrete mix was established. Concrete durability in high moisture environment, combined with fatigue traffic load and external supply of alkaline deicing salt solutions, was considered using newly developed principles of nonreactive aggregate selection. The aggregate selection based on petrographic analysis and the assessment of expansive behaviour of concrete was fully confirmed using the performance tests with external supply of sodium chloride. The suitability of the established methodology for durability acceptance testing for exploration of alternative materials for paving is discussed.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
105--119
Opis fizyczny
Bibliogr. 31 poz., il., tab.
Twórcy
autor
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
Bibliografia
- 1. P.C. Taylor, S.H. Kosmatka, G.F. Voigt, et al., Integrated Materials and Construction Practices for Concrete Pavement: A State-of-the-Practice Manual. FHWA HIF - 07 - 004, Federal Highway Administration (2006).
- 2. P. Mackiewicz, A. Szydło, B. Krawczyk, Influence of the construction technology on the texture and roughness of concrete pavements. Roads and Bridges - Drogi i Mosty, 17(2), 111-126 (2018).
- 3. N.J. Delatte, Concrete Pavement Design, Construction, and Performance, CRC Press, 2015
- 4. IMGW, Klimat Polski 2021; https://www.imgw.pl/sites/default/files/2022-04/imgw-pib_raport-klimat-polski_2021_0.pdf.
- 5. A. Szydło, P. Mackiewicz, R. Wardęga, B. Krawczyk, Katalog typowych konstrukcji nawierzchni sztywnych, Załącznik do zarządzenia Nr 30 Generalnego Dyrektora Dróg Krajowych i Autostrad, Warszawa 2014.
- 6. GDDKIA, Zarządzenie Nr 23 Generalnego Dyrektora Dróg Krajowych i Autostrad z dnia 7 czerwca 2018r. w sprawie stosowania Ogólnych Specyfikacji Technicznych w Generalnej Dyrekcji Dróg Krajowych i Autostrad, Załącznik 1 Ogólna Specyfikacja Techniczna D-05.03.04 Nawierzchnia z betonu cementowego, Warszawa 2018.
- 7. PN-EN 206+A2:2021-08 Beton - Wymagania, właściwości użytkowe, produkcja i zgodność
- 8. CEN/TR 16349 Framework for a specification on the avoidance of a damaging Alkali-Silica Reaction (ASR) in concrete, 2012.
- 9. W. Kurdowski, Kinds of concrete shrinkages, their importance and prevention methods. Cem. Wapno Beton, 26(2), 109-117 (2021). https://doi.org/10.32047/CWB.2021.26.2.5
- 10. PN-B-06265:2022-08 Beton - Wymagania, właściwości użytkowe, produkcja i zgodność - Krajowe uzupełnienie PN-EN 206+A2:2021-08.
- 11. PKN-CEN/TS 12390-9 Badania betonu - Część 9: Oznaczanie odporności na zamrażanie i rozmrażanie w obecności soli odladzających - Złuszczanie, 2017.
- 12. Y. Kang, W. Hansen, C. Borgnakke, Effect of air-void system on frost expansion of highway concrete exposed to deicer salt. International J. Pavement Eng. 13(3), 259-266 (2012). https://doi.org/10.1080/10298436.2011.633169.
- 13. A.M. Brandt, J. Kasperkiewicz, (eds.) Metody diagnozowania betonów i betonów wysokowartościowych na podstawie badań strukturalnych. Instytut Podstawowych Problemów Techniki PAN & NATO Scientific Affairs Division, Warszawa 2003, ISBN 83-917926-8-4.
- 14. M.A. Glinicki, M. Zieliński, The influence of CFBC fly ash addition on phase composition of air-entrained concrete. Bulletin of the Polish Academy of Sciences-Technical Sciences, 56(1), 45-52 (2008).
- 15. M.T. Ley, D. Welchel, J. Peery, J. Leflore, Determining the air-void distribution in fresh concrete with the Sequential Air Method. Constr. Build. Mater. 150, 723-737 (2017). https://doi.org/10.1016/j.conbuildmat.2017.06.037.
- 16. H. Hall, M.T. Ley, D. Welchel, J.M. Gudimettla, M. Praul, Field and laboratory validation of the sequential air method. Mater. Struct. 53(1), 14 (2020).
- 17. K. Dziedzic, M. Dąbrowski, A. Antolik, A. Glinicki, Characteristics of concrete mix air-entrainment applying the sequential pressure method. Roads and Bridges - Drogi i Mosty 19, 107 - 118 (2020). https://doi.org/10.7409/rabdim.020.007.
- 18. M.A. Glinicki, D. Jóźwiak-Niedźwiedzka, A. Antolik, K. Dziedzic, M. Dąbrowski, K. Bogusz, P. Lisowski, Analysis of causes of damage to single-layer concrete highway pavement. Roads and Bridges-Drogi i Mosty, 21, 3, 183-201 (2022). https://doi.org/10.7409/rabdim.022.011.
- 19. GDDKiA, Wytyczne techniczne klasyfikacji kruszyw krajowych i zapobiegania reakcji alkalicznej w betonie stosowanym w nawierzchniach dróg i drogowych obiektach inżynierskich. Warszawa 2019; https://www.gov.pl/web/gddkia/reaktywnosc-kruszyw.
- 20. TP B-StB Technische Prüfvorschriften für Verkehrsflächenbefestigungen - Betonbauweisen: Teil 1.1.09 AKR-Potenzial und Dauerhaftigkeit von Beton (60°C-Betonversuch mit Alkalizufuhr). FGSV-Verl., Köln 2018.
- 21. Ch. Müller, M. Seidel, M. Böhm, J. Stark, H.-M. Ludwig, K. Seyfarth, AKR-Untersuchungen für Fahrbahndecken aus Beton mit Waschbetonoberfläche. Straßenbau Heft S 90, Bergisch Gladbach 2015, ISBN: 978-3-95606-218-6.
- 22. A. Hafci, L. Turanli, F. Bektas, Effect of ASR expansion on mechanical properties of concrete. Cem. Wapno Beton, 26(1), 12-23 (2021). https://doi.org/10.32047/CWB.2021.26.1.2.
- 23. H. Zeitlhofer, B. Achleitner, G. Maier, C. Bos, M. Peyerl, S. Krispel, ASR testing versus field experience in Austria. 16th International Conference on Alkali-Aggregate Reaction in Concrete, Lisbon 2022, 527-538.
- 24. R. Breitenbücher, R. Przondziono, B. Meng, E. Krütt, F. Weise, Alkali-Kieselsäure-Reaktion in Betonfahrbahndecken unter Berücksichtigung von Verkehr und Taumitteln. Straße und Autobahn 70 (8), 655-664 (2019).
- 25. X. Liu, Q. Cui, Ch.W. Schwartz, Introduction of mechanistic-empirical pavement design into pavement carbon footprint analysis. International Journal of Pavement Engineering, 19:9, 763-771 (2018).
- 26. B. Środa, Innovative technologies in the cement industry. Cem. Wapno Beton, 26(5), 444-451 (2021). https://doi.org/10.32047/CWB.2021.26.5.7.
- 27. T. Rudnicki, The impact of the aggregate used on the possibility of reducing the carbon footprint in pavement concrete. Sustainability, 14(24), 16478 (2022); https://doi.org/10.3390/su142416478.
- 28. W. Kubissa, M. Dąbrowski, B. Chojnacki, M.A. Glinicki, Durability of paving concrete produced in a laboratory setting and obtained in field at expressway construction site. Roads and Bridges - Drogi i Mosty, 20, 4, 397-412 (2021). https://doi.org/10.7409/rabdim.021.023.
- 29. K. Bogusz, M.A. Glinicki, Volumetric stability and elastic properties of concrete subjected to simulated service exposure conditions on road pavements. Cem. Wapno Beton, 27(6), 412-426 (2022). https://doi.org/10.32047/CWB.2022.27.6.4.
- 30. J. Cassiani, G. Martinez-Arguelles, R. Peñabaena-Niebles, S. Keßler, M. Dugarte, Sustainable concrete formulations to mitigate Alkali-Silica reaction in recycled concrete aggregates (RCA) for concrete infrastructure. Constr. Build. Mater. 307, 124919 (2021). https://doi.org/10.1016/j.conbuildmat.2021.124919.
- 31. A. Behnood, J. Olek, M.A. Glinicki, Predicting compressive strength of recycled concrete aggregate using M5′ model, Int. Symp. Brittle Matrix Composites 11, 28-30 September 2015, IPPT PAN, Warsaw 2015, 381-391.i
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6a6909a-f6a2-4d94-b154-19d206b8080b