Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents the results of a fi eld study on using mineral materials (fine-grained sand and medium- -grained gravel) to reduce the concentration of readily soluble salts in a roadside environment. The investigated soils were Rendzic Sceletic Leptosols from an urban area characterized by a shallow humus horizon with a high content of skeletal parts, as well as a lack of homogeneity of the material in the soil profile. All soil samples were taken from five plots located along the main streets in the city of Opole (Southern Poland). It was revealed that the use of fine-grained sand and medium-grained gravel improved the structure of the surface soil layer, and thus favoured the migration of Na+ and Cl- ions into the soil profile. In comparison to control surfaces readily soluble salts were reduced with gravel and sand application. Furthermore, the mineral materials introduced on the soil surface for salinity neutralization did not affect the quality of the tested roadside calcareous soils. The results indicate that the use of mineral materials reduces soil salinity caused by NaCl. They also show the need to find new methods of salt neutralization, especially of roadside soils in order to improve and protect the quality of the environment.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
83--90
Opis fizyczny
Bibliogr. 39 poz., tab., wykr.
Twórcy
autor
- Department of Land Protection, Faculty of Natural Sciences and Technology, University of Opole, Poland
autor
- Department of Land Protection, Faculty of Natural Sciences and Technology, University of Opole, Poland
autor
- Department of Land Protection, Faculty of Natural Sciences and Technology, University of Opole, Poland
Bibliografia
- 1. Anwari, G.A., Mandozai, A. & Feng, J. (2020). Effects of Biochar Amendment on Soil Problems and Improving Rice Production under Salinity Conditions, Advanced Journal of Graduate Research, 7, pp. 45-63, DOI:10.21467/ajgr.7.1.45-63.
- 2. Asensio, E., Ferreira, V.J., Gil, G., García-Armingol, T., López-Sabirón, A.M. & Ferreira, G. (2017). Accumulation of de-icing salt and leaching in Spanish soils surrounding roadways, International Journal of Environmental Research and Public Health, 14,12, pp. 1-19, DOI:10.3390/ijerph14121498.
- 3. Berkheimer, S.F. & Hanson, E. (2006). Deicing Salts Reduce Cold Hardiness and Increase Flower Bud Mortality of Highbush Blueberry, Journal of the American Society for Horticultural Science, 131, pp. 11-16, DOI:10.21273/JASHS.131.1.11.
- 4. Blomqvist, G. & Johansson, E.-L. (1999). Airborne spreading and deposition of de-icing salt - a case study, Science of the Total Environment, 235, pp. 161-168.
- 5. Bryson, G.M. & Barker, A.V. (2002). Sodium accumulation in soils and plants along Massachusetts roadsides, Communications in Soil Science and Plant Analysis, 33, pp. 67-78, DOI: 10.1081/CSS-120002378.
- 6. Cekstere, G., Nikodemus, O. & Osvalde, A. (2008). Toxic impact of the de-icing material to street greenery in Riga, Latvia, Urban Forestry & Urban Greening, 7, pp. 207-217, DOI: 10.1016/j.ufug.2008.02.004.
- 7. Cekstere, G. & Osvalde, A. (2013). A study of chemical characteristics of soil in relation to street trees status in Riga (Latvia), Urban Forestry & Urban Greening, 12, pp. 69-78, DOI: 10.1016/j.ufug.2012.09.004.
- 8. Cunningham, M.A., Snyder, E., Yonkin, D., Ross, M. & Elsen, T. (2008). Accumulation of deicing salts in soils in an urban environment, Urban Ecosystems, 11, pp. 17-31, DOI: 10.1007/s11252-007-0031-x.
- 9. Czarna, M. (2014). The effectiveness of chemicals used in removing winter slipperiness, Zesz. Nauk. Inż. Śr. Uniw. Zielonogórs. 33, pp. 110-116.
- 10. Daliakopoulos, I.N., Tsanis, I.K., Koutroulis, A., Kourgialas, N.N., Varouchakis, A.E., Karatzas, G.P. & Ritsema, C.J. (2016). The threat of soil salinity: A European scale review, Science of the Total Environment, 573, pp. 727-739, DOI: 10.1016/j.scitotenv.2016.08.177.
- 11. de Santiago-Martín, A., Michaux, A., Guesdon, G., Constantin, B., Despréaux, M. & Galvez-Cloutier, R. (2016). Potential of anthracite, dolomite, limestone and pozzolan as reactive media for de-icing salt removal from road runoff, International Journal of Environmental Science and Technology 13, pp. 2313-2324, DOI: 10.1007/s13762-016-1085-1.
- 12. Dmuchowski, W., Baczewska, A.H., Gozdowski, D., Rutkowska, B., Szulc, W., Suwara, I. & Bragoszewska, P. (2014). Effect of salt stress caused by deicing on the content of microelements in leaves of linden, Journal of Elementology, 19, DOI: 10.5601/jelem.2014.19.1.588.
- 13. Fay, L. & Shi, X. (2012). Environmental Impacts of Chemicals for Snow and Ice Control: State of the Knowledge, Water, Air, & Soil Pollution, 223, pp. 2751-2770, DOI: 10.1007/s11270-011-1064-6.
- 14. Feng, H., Chen, J., Zheng, X., Xue, J., Miao, C., Du, Q. & Xu, Y. (2018). Effect of Sand Mulches of Different Particle Sizes on Soil Evaporation during the Freeze-Thaw Period. Water 10, 5, 536. DOI: 10.3390/w10050536.
- 15. Gan, Y.T., Huang, G.B., Li, L.L., Liu, J.H. & Hu, Y.G. (2008). Unique conservation tillage practices in northwest China, In: Goddard, T., Zoebisch, M.A., Gan, Y., Ellis, W., Watson, A. & Sombatpanit, S (Eds.), No-till Farming Systems, World Association of Soil Water Conservation, Special publication, 3, pp. 429-445.
- 16. Garakani, A.A., Haeri, S.M., Cherati, D.Y., Givi, F.A., Tadi, M.K., Hashemi, A.H., Chiti, N. & Qahremani, F. (2018). Effect of road salts on the hydro-mechanical behavior of unsaturated collapsible soils, Transportation Geotechnics, 17, 77-90. DOI: 10.1016/j.trgeo.2018.09.005
- 17. Green, S.M., Machin, R. & Cresser, M.S. (2008). Effect of long-term changes in soil chemistry induced by road salt applications on N-transformations in roadside soils, Environmental Pollution, 152, pp. 20-31, DOI: 10.1016/j.envpol.2007.06.005.
- 18. Haj-Amor, Z. & Bouri, S. (2019). Subsurface Drainage System Performance, Soil Salinization Risk, and Shallow Groundwater Dynamic Under Irrigation Practice in an Arid Land, Arabian Journal for Science and Engineering, 44, pp. 467-477. DOI:10.1007/s13369-018-3606-3.
- 19. Howard, K.W.F. & Maier, H. (2007). Road de-icing salt as a potential constraint on urban growth in the Greater Toronto Area, Canada, Journal of Contaminant Hydrology, 91, pp. 146-170, DOI: 10.1016/j.jconhyd.2006.10.005.
- 20. Judd, J.H. (1970). Lake stratification caused by runoff from street deicing, Water Research, 4, pp. 521-532, DOI: 10.1016/0043-1354(70)90002-3.
- 21. Kabała, C. & Karczewska, A. (2017). Methodology for laboratory analysis of soils and plants, Wrocław 2017. (in Polish)
- 22. Kabała, C., Charzyński, P., Chodorowski, J., Drewnik, M., Glina, B., Greinert, A., Hulisz, P., Jankowski, M., Jonczak, J., Łabaz, B., Łachacz, A., Marzec, M., Mendyk, Ł., Musiał, P., Musielok, Ł., Smerczak, B., Sowiński, P., Świtoniak, M., Uzarowicz, Ł. & Waroszewski, J. (2019). Polish Soil Classification, 6th edition - principles, classification scheme and correlations. Soil Science Annual, 70(2): 71-97, DOI:10.2478/ssa-2019-0009.
- 23. Kelly, V.R., Lovett, G.M., Weathers, K.C., Findlay, S.E.G., Strayer, D.L., Burns, D.J. & Likens, G.E. (2008). Long-Term Sodium Chloride Retention in a Rural Watershed: Legacy Effects of Road Salt on Streamwater Concentration, Environmental Science & Technology, 42, pp. 410-415, DOI:10.1021/es071391l.
- 24. Kochanowska, K. & Kusza, G. (2011). Influence of snow removal with chemicals on sorption properties of rendzinas in the town of Opole, Chemistry-Didactics-Ecology-Metrology, 16, pp. 41-45. (in Polish)
- 25. Kwasowski, W. & Czyż, M. (2011). Reaction of lime trees (Tilia sp.) growing along the Żwirki i Wigury Street in Warsaw on soil salinity caused by chemical technology of snow removal, Quest Ecology, 14, pp. 81-83, DOI: 10.12775/v10090-011-0023-6.
- 26. Licznar, S.E. (1976). Rendzinas and soils on limestone of the Opole region in the light of micromorphological and physico-chemical investigations, Soil Science Annual, 27, pp. 73-121. (in Polish)
- 27. Łuczak, K. & Kusza, G. (2015). The influence of coconut fibre and salts composite used for eliminating slipperiness and on roads on soils, Ecological Chemistry And Engineering A, 22,4, pp. 481-488, DOI:10.2428/ecea.2015.22(4)38.
- 28. Maciak, F. (2003). Environment protection and recultivation, SGGW, Warszawa. (in Polish)
- 29. Ostrowska, A., Gawliński, S. & Szczubiałka, Z. (1991). Methods for analyzing and assessing soil and plant properties, Warszawa. (in Polish)
- 30. Paludan-Müller, G., Saxe, H., Pedersen, L.B. & Randrup, T.B. (2002). Differences in salt sensitivity of four deciduous tree species to soil or airborne salt, Physiologia Plantarum, 114, 2, pp. 223-230, DOI: 10.1034/j.1399-3054.2002.1140208.x.
- 31. Qiu, Y., Xie, Z., Wang, Y., Ren, J. & Malhi, S.S. (2014). Influence of gravel mulch stratum thickness and gravel grain size on evaporation resistance, Journal of Hydrology, 519, pp. 1908-1913, DOI: 10.1016/j.jhydrol.2014.09.085.
- 32. Ramakrishna, D.M. & Viraraghavan, T. (2005). Environmental impact of chemical deicers - A review, Water, Air, & Soil Pollution, 166, pp. 49-63, DOI: 10.1007/s11270-005-8265-9.
- 33. Skowera, B., Wojkowski, J. & Ziernicka-Wojtaszek, A. (2016). The thermal-precipitation conditions in the Opole voivodeship in the 1981-2010 period, Infrastructure and Ecology of Rural Areas, 3,2, pp. 919-934, DOI: 10.14597/infraeco.2016.3.2.067. (in Polish)
- 34. Srivastava, N. (2020). Reclamation of Saline and Sodic Soil Through Phytoremediation, In: Shukla, V., Kumar, N. (Eds.), Environmental Concerns and Sustainable Development, Biodiversity, Soil and Waste Management, 2, pp. 279-306, DOI: 10.1007/978-981-13-6358-0_11.
- 35. Tan, J., Wang, X., Tian, J. & Su, X. (2018). Effect of gravel-sand mulching on movements of soil water and salts under different amounts of brackish water, Chinese Society of Agricultural Engineering, 34, pp. 100-108. DOI: 10.11975/j.issn.1002-6819.2018.17.014.
- 36. Xie, Z., Wang, Y., Wei, X. & Zhang, Z. (2006). Impacts of a gravel-sand mulch and supplemental drip irrigation on watermelon (Citrullus lanatus [Thunb.] Mats. & Nakai) root distribution and yield, Soil & Tillage Research, 89, pp. 35-44, DOI: 10.1016/j.still.2005.06.013.
- 37. Youngs, E.G. & Leeds-Harrison, P.B. (2000). Improving efficiency of desalinization with subsurface drainage, Journal of Irrigation and Drainage Engineering, 126, pp. 375-380, DOI: 10.1061/(ASCE)0733-9437(2000)126:6(375).
- 38. Yuan, C., Zhang, X., Lei, T., Liu, H. & Li, X. (2008). Effects of mulching sand and gravel size on soil moisture evaporation, Transactions of the Chinese Society of Agricultural Engineering, 24, pp. 25-28.
- 39. Zare, S., Jafari, M., Ahamdi, H., Tavili, A., Arjomandi, R.K. & Oztac, T. (2015). Mineral mulch and soil chemical properties, European Association of Geoscientists and Engineers, pp. 4696-4698, DOI:10.3997/2214-4609.201412512
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6a63242-4ff6-4f47-8ad5-0aab4942ae10