PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ozone detection based on an nitrogen oxide photoacoustic spectroscopy system and chemical reaction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ozone is known as a "god-given purifying agent", and its quantitative detection is of great significance. A low-cost photoacoustic spectroscopy (PAS) which is based on absorption at the low-power blue diode emitting at 403.65 nm has been used for nitrogen oxide (NO2) concentration measurements. According to the formula of nitric oxide (NO) reaction and ozone (O3) production of NO2 and the differential detection method, a dual-channel PAS system for O3 detection is reported. The consistency of NO2 detection with the dual-channel photoacoustic spectroscopy system is good by contrast. The coefficient of determination R2 can still reach 0.846. An intercomparison between the system and a cavity ring-down system (CRDS) was shown to verify the accuracy. The results showed a linear correction factor (R2) of 0.943 in a slope of 0.862±0.002, with an offset of (0.773±0.128) ppb. In addition, the measurement of O3 using the dual-channel cavity photoacoustic spectroscopy technique was deployed. These observations indicate that O3 concentrations can be effectively observed with the dual-channel PAS instrument.
Rocznik
Strony
73--87
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • School of Mechanical Engineering, Anhui University of Science and Technology, Huainan 232001, China
autor
  • School of Mechanical Engineering, Anhui University of Science and Technology, Huainan 232001, China
autor
  • School of Mechanical Engineering, Anhui University of Science and Technology, Huainan 232001, China
autor
  • School of Mechanical Engineering, Anhui University of Science and Technology, Huainan 232001, China
Bibliografia
  • [1] CESTONARO L.V., MARCOLAN A.M., ROSSATO-GRANDO L.G., ANZOLIN A.P., GOETHEL G., VILANI A., GARCIA S.C., BERTOL C.D., Ozone generated by air purifier in low concentrations: friend or foe?, Environ. Sci. Poll. Res., 2017, 24 (28), 22673–22678. DOI: 10.1007/s11356-017-9887-3.
  • [2] FAIRLEY D., Overshoot bias and the national ozone standard, J. Air Waste Manage. Assoc., 1999, 49 (4), 370–385. DOI: 10.1080/10473289.1999.10463813.
  • [3] PILLAR E.A., GUZMAN M.I., RODRIGUEZ J.M., Conversion of iodide to hypoiodous acid and iodine in aqueous microdroplets exposed to ozone, Environ. Sci. Technol., 2014, 47 (19), 10971–10979. DOI: 10.1021/es401700h.
  • [4] NANDI G., NASKAR S., GHOSH T.K., Theoretical investigation on the reaction mechanism of ozone with chlorine, bromine and iodine atoms, Comp. Theor. Chem., 2021, 1204, 113410. DOI: 10.1016/j. comptc.2021.113410.
  • [5] JANOWSKI T.M., SZTARK W., Method of standards preparation for colorimetric determination of ozone in the atmosphere, Roczniki Państwowego Zakładu Higieny, 1995, 46 (1), 67–70.
  • [6] FELIX E.,CARDOSO A., Colorimetric determination of ambient ozone using indigo blue droplet, J. Braz. Chem. Soc., 2006, 17 (2), 296–301. DOI: 10.1590/S0103-50532006000200012.
  • [7] MIWA T., MARUO Y.Y., AKAOKA K., KUNIOKA T., NAKAMURA J., Development of colorimetric ozone detection papers with high ultraviolet resistance using ultraviolet absorbers, J. Air Waste Manage. Assoc., 2009, 59 (7), 801–808. DOI: 10.3155/1047-3289.59.7.801.
  • [8] LOPAEV D.V., MALYKHIN E.M., NAMIOT V.A., UV absorption of vibrationally excited ozone, J. Phys. B: At. Mol. Opt. Phys., 2008, 41 (8), 085104. DOI: 10.1088/0953-4075/41/8/085104.
  • [9] GODIN-BEEKMANN S., NAIR P.J., Sensitivity of stratospheric ozone lidar measurements to a change in ozone absorption cross-sections, J. Quant. Spectr. Radiat. Transf., 2012, 113 (11), 1317–1321. DOI: 10.1016/j.jqsrt.2012.03.002.
  • [10] ZHAO Z.Y., WANG L., FAN J.M., SONG Y.H., CHU G.W., SHAO L., Degradation of indigo carmine by coupling Fe(II)-activated sodium persulfate and ozone in a rotor-stator reactor, Chem. Eng. Proc.: Proc. Int., 2020, 148, 107791. DOI: 10.1016/j.cep.2019.107791.
  • [11] MULLER J.B.A., SMITH C.E., NEWTON M.I., PERCIVAL C.J., Evaluation of coated QCM for the detection of atmospheric ozone, Analyst, 2011, 136 (14), 2963–2968. DOI: 10.1039/c1an15106a.
  • [12] BOWMAN R.L., ALEXANDER N., Ozone-induced chemiluminescence of organic compounds, Sci., 1966, 154 (3755), 1454–1456. DOI: 10.1126/science.154.3755.1454.
  • [13] ZAHN A.,WEPPNER J., WIDMANN H., SCHLOTE-HOLUBEK K.,BURGER B., KUHNER T., FRANKE H., A fast and precise chemiluminescence ozone detector for eddy flux and airborne application, Atm. Meas. Tech., 2012, 5 (2), 363–375. DOI: 10.5194/amt-5-363-2012.
  • [14] CHRISTENSEN P.A., YONAR T., ZAKARIA K., The electrochemical generation of ozone. A Review, Ozone: Sci. Eng., 2013, 35 (3), 149–167. DOI: 10.1080/01919512.2013.761564.
  • [15] SILVA L.M., SANTANA M.H.P., BOODTS J.F.C., Electrochemistry and green chemical processes: electrochemical ozone production, Química Nova, 2003, 26 (6), 880–888. DOI: 10.1590/S0100-40422003 000600017.
  • [16] GONDAL M.A., YAMANI Z.H., Highly sensitive electronically modulated photoacoustic spectrometer for ozone detection, Appl. Opt., 2007, 46 (29), 7083–7090. DOI: 10.1364/AO.46.007083.
  • [17] KEERATIRAWEE K., HAUSER P.C., Photoacoustic detection of ozone with a red laser diode, Talanta, 2020, 223 (2), 121890. DOI: 10.1016/j.talanta.2020.121890.
  • [18] CHIEN H.T., WANG K., SHEEN S.H., RAPTIS A.C., Standoff detection of ozone in an open environment using photoacoustic spectroscopy technique, Appl. Phys. Lett., 2012, 100 (10), 104102. DOI: 10.1063 /1.3692595.
  • [19] QI X., PANG X.L., HONG Y., WANG Y.L., LOU S.R., FENG J.L., CHENG P., ZHOU Z., Real-time analysis of the homogeneous and heterogeneous reactions of pyrene with ozone by SPAMS and CRD-EAS, Chemosphere, 2019, 234, 608–617. DOI: 10.1016/j.chemosphere.2019.06.050.
  • [20] WASHENFELDER R.A., WAGNER N.L., DUBE W.P., BROWN S.S., Measurement of atmospheric ozone by cavity ring-down spectroscopy, Environ. Sci. Technol., 2011, 45 (7), 2938–2944. DOI: 10.1021/es103340u.
  • [21] BARBE A., DE BACKER-BARILLY M.R., TYUTEREV V.G., CAMPARGUE A., ROMANINI D., KASSI S., CW- -cavity ring down spectroscopy of the ozone molecule in the 5980–6220 cm–1 region, J. Mol. Spectr., 2007, 242 (2), 156–175. DOI: 10.1016/j.jms.2007.02.022.
  • [22] GOMEZ A.L., ROSEN E.P., Fast response cavity enhanced ozone monitor, Atm. Meas. Tech., 2013, 6 (2), 487–494. DOI: 10.5194/amt-6-487-2013.
  • [23] HANNUN R.A., SWANSON A.K., BAILEY S.A., HANISCO T.F., BUI T.P., BOURGEOIS I., PEISCHL J., RYERSON T.B., A cavity-enhanced ultraviolet absorption instrument for high-precision, fast-time-response ozone measurements, Atm. Meas. Tech., 2021, 13 (12), 6877–6887. DOI: 10.5194/amt-13- 6877-2020.
  • [24] GE B.Z., SUN Y.L., LIU Y., DONG H.B., JI D.S., JIANG Q., LI J., WANG Z.F., Nitrogen dioxide measurement by cavity attenuated phase shift spectroscopy (CAPS) and implications in ozone production efficiency and nitrate formation in Beijing, China, J. Geophys. Res. Atm., 2013, 118 (16), 9499–9509. DOI: 10.1002/jgrd.50757.
  • [25] EI-SHERBINY M., BALLIK E.A., SHEWCHUN J., GARSIDE B.K., REID J., High sensitivity point monitoring of ozone, and high-resolution spectroscopy of the nu (3) band of ozone using a tunable semiconductor diode laser, Appl. Opt., 1979, 18 (8), 1198–1203. DOI: 10.1364/AO.18.001198.
  • [26] WILD R.J., EDWARDS P.M., DUBE W.P., BAUMANN K., EDGERTON E.S., QUINN P.K., ROBERTS J.M., ROLLINS A.W., VERES P.R., WARNEKE C., WILLIAMS E.J., YUAN B., BROWN S.S., A measurement of total reactive nitrogen, NOy, together with NO2, NO, and O3 via cavity ring-down spectroscopy, Environ. Sci. Technol., 2014, 48 (16), 9609–9615. DOI: 10.1021/es501896w.
  • [27] WAGNER N.L., DUBE W.P., WASHENFELDER R.A., YOUNG C.J., POLLACK I.B., RYERSON T.B., BROWN S.S., Diode laser-based cavity ring-down instrument for NO3, N2O5, NO, NO2 and O3 from aircraft, Atm. Meas. Tech., 2011, 4 (6), 1227–1240. DOI: 10.5194/amt-4-1227-2011.
  • [28] QU Z., HENZE D.K., COOPER O.R., NEU J.L., Impacts of global NOx inversions on NO2 and ozone simulations, Atm. Chem. Phys., 2020, 20 (21), 13109–13130. DOI: 10.5194/acp-20-13109-2020.
  • [29] LI Z.Y., HU R.Z., XIE P.H., CHEN H., LIU X.Y., LIANG S.X., WANG D., WANG F.Y., WANG Y.H., LIN C., LIU J.G., LIU W.Q., Simultaneous measurement of NO and NO2 by a dual-channel cavity ring-down spectroscopy technique, Atm. Meas. Tech., 2019, 12 (6), 3223–3236. DOI: 10.5194/amt-12-3223- 2019.
  • [30] BURROWS J.P., DEHN A., DETERS B., HIMMELMANN S., RICHTER A., VOIGT S., ORPHAL J., Atmospheric remote-sensing reference data from Gome: Part 1. Temperature-dependent absorption cross-sections of NO2 in the 231–794 nm range, J. Quant. Spectr. Radiat. Transf., 1998, 60 (6), 1025–1031. DOI: 10.1016/S0022-4073 (97)00197-0.
  • [31] JIN H.W., XIE P.H., HU R.Z., HUANG C.C., LIN C., WANG F.Y., Design of NO2 photoacoustic sensor with high reflective mirror based on low power blue diode laser, Chin. Phys. B., 2020, 29 (6), 060701. DOI: 10.1088/1674-1056/ab8376.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6a5f731-926b-4920-8c4c-e1a51913bde8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.