Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We derive the limiting distributions of exceedances point processes of randomly scaled weakly dependent stationary Gaussian sequences under some mild asymptotic conditions. In the literature analogous results are available only for contracted stationary Gaussian sequences. In this paper, we include additionally the case of randomly inflated stationary Gaussian sequences with a Weibullian type random scaling. It turns out that the maxima and minima of both contracted and inflated weakly dependent stationary Gaussian sequences are asymptotically independent.
Czasopismo
Rocznik
Tom
Strony
45--59
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
- Department of Actuarial Science, University of Lausanne, Quartier UNIL-Dorigny, Bâtiment Extranef, CH-1015 Lausanne, Switzerland
autor
- School of Mathematics and Statistics, Southwest University, 400715 Chongqing, China
autor
- Department of Actuarial Science, University of Lausanne, Quartier UNIL-Dorigny, Bâtiment Extranef, CH-1015 Lausanne, Switzerland
Bibliografia
- [1] M. Arendarczyk and K. Dębicki, Asymptotics of supremum distribution of a Gaussian process over a Weibullian time, Bernoulli 17 (2011), pp. 194-210.
- [2] M. Arendarczyk and K. Dębicki, Exact asymptotics of supremum of a stationary Gaussian process over a random interval, Statist. Probab. Lett. 82 (2012), pp. 645-652.
- [3] S. M. Berman, Limit theorems for the maximum term in stationary sequences, Ann. Math. Statist. 35 (1964), pp. 502-516.
- [4] R. A. Davis, Maxima and minima of stationary sequences, Ann. Probab. 7 (1979), pp. 453-460.
- [5] P. Embrechts, C. Klüppelberg, and T. Mikosch, Modelling Extremal Events for Insurance and Finance, Springer, Berlin 1997.
- [6] M. Falk, J. Hüsler, and R.-D. Reiss, Laws of Small Numbers: Extremes and Rare Events, third edition, DMV Seminar, Vol. 23, Birkhäuser, Basel 2010.
- [7] E. Hashorva and Z. Weng, Limit laws for maxima of contracted stationary Gaussian sequences, Comm. Statist. Theory Methods (2014), in press.
- [8] E. Hashorva and Z. Weng, Tail asymptotic of Weibull-type risks, Statistics (2013), http://dx.doi.org/10.1080/02331888.2013.800520.
- [9] A. Hu, Z. Peng, and Y. Qi, Limit laws for maxima of contracted stationary Gaussian sequences, Metrika 70 (2009), pp. 279-295.
- [10] M. R. Leadbetter, G. Lindgren, and H. Rootzén, Extremes and Related Properties of Random Sequences and Processes, Springer, New York 1983.
- [11] Z. Peng, J. Tong, and Z. Weng, Joint limit distributions of exceedances point processes and partial sums of Gaussian vector sequence, Acta Math. Sin. (Engl. Ser.) 28 (8) (2012), pp. 1647-1662.
- [12] V. I. Piterbarg, Asymptotic Methods in the Theory of Gaussian Processes and Fields, Transl. Math. Monogr., Vol 148, American Mathematical Society, Providence, RI, 1996.
- [13] S. I. Resnick, Extreme Values, Regular Variation, and Point Processes, Applied Probability. A Series of the Applied Probability Trust, Vol. 4, Springer, New York 1987.
- [14] M. Wiśniewski, On extreme-order statistics and point processes of exceedances in multi-variate stationary Gaussian sequences, Statist. Probab. Lett. 29 (1996), pp. 55-59.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6a2c11a-f6e2-4b25-a4ef-53db1f964e9f