Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Polymers found regard among engineers and researcher their special proprieties. Now, we find using the polymers at present in the most advanced technically the branches of industry. In construction of machines, more and more often are practical used hyperdeform materials. The group of construction materials, called hyperdeformable, includes among others: elastomers, plastics made based on rubber, thermoplastic structures, such as polycarbonate, gels and sols, composites and foams: open and closed pores. Porous structures are produced on the basis of different materials, synthetic thermoplastic polymers and thermosetting. The problem of porous materials is taken in many research centres in the world. Porous materials (also called cellular plastics, foam plastics or foamed plastics) include gas phase dispersed in a solid phase of polymeric material. Properties of such systems depend on the properties of the polymer warp and cell structure comprising the gas phase. Approach previously used to anticipate and interpret the behaviour of the hyperdeformable structures, using the theory of hyperelastic materials, does not resolve the issue because it only describes the elastic properties. The article presents an original methodology developed structural identification the viscoelastic properties of hyperdeformable materials, and in particular modern construction materials from the group of plastics and composites of elastomers, foams, etc
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
259--263
Opis fizyczny
Bibliogr. 9 poz., rys.
Twórcy
autor
- Warsaw Institute of Technology Department of Materials Engineering Narbutta Street 84, 02-524 Warsaw, Poland tel.: +48 226238309, +48 222348620, fax: +48 222348622
autor
- Warsaw Institute of Technology Department of Materials Engineering Narbutta Street 84, 02-524 Warsaw, Poland tel.: +48 226238309, +48 222348620, fax: +48 222348622
Bibliografia
- [1] Landrock, A. H., Handbook of Plastic Foams, Noyes Publications, USA 1995.
- [2] Fitzgerald, C., Lyn, I., Mills, N. J., Air flow through polyurethane foams with near-circular cell face holes, Journal of Cellular Plastics, 40, p. 89-110, 2004.
- [3] Żach, P., Structural identification of the spring and damping quality for hyperdeform materials, ITERWarsaw2013.
- [4] Ogden, R. W., Large Deformation Isotropic Elasticity - On the Correlation of Theory and Experiment for Incompressible Rubberlike Solids, Proceedings of the Royal Society of London 1972.
- [5] Ogden, R. W., Roxburgh D. G., A Pseudo-Elastic Model for the Mullins Effect in Filled Rubber, Proceedings of the Royal Society of London, Series A, Vol. 455, pp. 2861-2877, 1999.
- [6] Ogden, R. W., Nonlinear Elasticity with Application to Material Modeling, Institute of Fundamental Technological Research, Polish Academy of Sciences, Lecture Notes 6, Warsaw 2003.
- [7] Dudziak, M., Mielniczuk, J., Nieklasyczne modele materiałów w projektowaniu maszyn, Wydawnictwo Instytutu Technologii Eksploatacji, Radom 2001.
- [8] ABAQUS Online Documentation: Version 6.6, 2006.
- [9] Osiński, J., Żach, P., Sprawozdanie z pracy badawczej nr584/03/Wn50/NE-OZ-TX/D, Opracowanie nowych metod odzysku materiałów poliuretanowych z wyposażenia pojazdów, Ministerstwo Środowiska, Warszawa 2004.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6a25225-dc05-4538-bc39-14ce17a89184