PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling and experimental investigation of waste tyre pyrolysis process in a laboratory reactor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A mathematical model of waste tyre pyrolysis process is developed in this work. Tyre material decomposition based on a simplified reaction mechanism leads to main product lumps: noncondensable (gas), condensable (pyrolytic oil) and solid (char). The model takes into account kinetics of heat and mass transfer in the grain of the shredded rubber material as well as surrounding gas phase. The main reaction routes were modelled as the pseudo-first order reactions with a rate constant calculated from the Arrhenius type equation using literature values of activation energy determined for main tyre constituents based on TG/DTG measurements and tuned pre-exponential parameter values obtained by fitting theoretical predictions to the experimental results obtained in our laboratory reactor. The model was implemented within the CFD software (ANSYS Fluent). The results of numerical simulation of the pyrolysis process revealed non-uniformity of sample’s porosity and temperature. The simulation predictions were in satisfactory agreement with the experimentally measured mass loss of the tyre sample during pyrolysis process investigated in a laboratory reactor.
Słowa kluczowe
Rocznik
Strony
445--454
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
autor
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, Warsaw, Poland
Bibliografia
  • 1. ANSYS Fluent Theory Guide, 2017. Ansys Inc., rel. 18.0., January 2017. Available at: www.ansys.com.
  • 2. Antoniou N., Zabaniotou A., 2013. Features of an efficient and environmentally attractive used tyres pyrolysis with energy and material recovery. Renewable Sustainable Energy Rev., 20, 539–558. DOI: 10.1016/j.rser.2012.12.005.
  • 3. Aylón E., Callén M. S., López J.M., Mastral A.M., Murillo R., Navarro M.V., Stelmach S., 2005. Assessment of tire devolatilization kinetics. J. Anal. Appl. Pyrolysis, 74, 259–264. DOI: 10.1016/j.jaap.2004.09.006.
  • 4. Aylón E., Fernández-Colino A., Murillo R., Grasa G., Navarro M.V., García T., Mastral A.M., 2010b. Waste tyre pyrolysis: Modelling of a moving bed reactor. Waste Manage., 30, 2530–2536. DOI: 10.1016/j.wasman.2010.04.018.
  • 5. Aylón E., Fernández-Colino A., Murillo R., Navarro M.V., García T., Mastral A.M., 2010a. Valorisation of waste tyre by pyrolysis in a moving bed reactor. Waste Manage., 30, 1220–1224. DOI: 10.1016/j.wasman.2009.10.001.
  • 6. Bianchi M., Bortolani G., Cavazzoni M., De Pascale A., Montanari I., Nobili M., Peretto A., Tosi C., Vecci R., 2014. Preliminary design and numerical analysis of a scrap tires pyrolysis system. Energy Procedia, 45, 111– 120. DOI: 10.1016/j.egypro.2014.01.013.
  • 7. Cherbański R., Wróblewski K., Molga E.J., 2016. Badanie procesu pirolizy zużytych opon samochodowych w reaktorze laboratoryjnym. Inż. Ap. Chem., 55 (1), 16-17.
  • 8. Kaminsky W., Mennerich C., Zhang Z., 2009. Feedstock recycling of synthetic and natural rubber by pyrolysis in a fluidized bed. J. Anal. Appl. Pyrolysis, 85, 334–337. DOI: 10.1016/j.jaap.2008.11.012.
  • 9. Lam K.-L., Gebreegziabher T., Oyedun A. O., Lee H. K. M. Hui C.-W., 2012. CFD study on fluidized bed pyrolyzers. Chem. Eng. Trans., 29, 661-666.
  • 10. Lopez G., Olazar M., Aguado R., Elordi G., Amutio M., Artetxe M., Bilbao J., 2010. Vacuum pyrolysis of waste tires by continuously feeding into a conical spouted bed reactor. Ind. Eng. Chem. Res., 49, 8990–8997. DOI: 10.1021/ie1000604.
  • 11. Machniewski P., Rudniak L., Molga E., 2016. Modelowanie procesu pirolizy odpadów gumowych. Inż. Ap. Chem., 55 (1), 28-29 (in Polish).
  • 12. Miranda M., Pinto F., Gulyurtlu I., Cabrita I., 2013. Pyrolysis of rubber tyre wastes: A kinetic study. Fuel, 103, 542–552. DOI: 10.1016/j.fuel.2012.06.114.
  • 13. Mtui P., 2013. CFD modeling of devolatilization and combustion of shredded tires and pine wood in rotary cement kilns. Amer. J. Energy Engineering, 1, 51-55. DOI: 10.11648/j.ajee.20130105.11.
  • 14. Niksiar A., Sohrabi M., 2014. Mathematical modeling of waste plastic pyrolysis in conical spouted beds: Heat, mass, and momentum transport. J. Anal. Appl. Pyrolysis, 110, 66–78. DOI: 10.1016/j.jaap.2014.08.005.
  • 15. Olazar M., Lopez G., Arabiourrutia M., Elordi G., Aguado R., Bilbao J., 2008. Kinetic modelling of tyre pyrolysis in a conical spouted bed reactor. J. Anal. Appl. Pyrolysis, 81, 127–132. DOI: 10.1016/j.jaap.2007.09.011.
  • 16. Queck A., Balasubramanian R., 2012. Mathematical modeling of rubber tire pyrolysis. J. Anal. Appl. Pyrolysis, 95, 1–13. DOI: 10.1016/j.jaap.2012.01.012.
  • 17. Yang J., Tanguy P.A., Roy C., 1995. Heat transfer, mass transfer and kinetics study of the vacuum pyrolysis of a large used tire particle. Chem. Eng. Sci., 50, 1909–1922. DOI: 10.1016/0009-2509(95)00062-A.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f69e8610-4874-4dfa-9f9d-68689578496e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.