Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
An enormous number of magnetic resonance imaging (MRI) brain images were produced in hospitals and several MRI centers. To exploit the diagnosis in MRI brain image, “content-based image retrieval (CBIR)” system is accessed in the MRI brain image database. In this paper, a content-based MRI brain image retrieval system is presented, which is helpful in the medical field to seek a diagnosis in an MRI brain image that is similar to the example given. This paper consists of preprocessing, feature extraction, feature selection, similarity measure, and classification. In the preprocessing phase, the Wiener filter is used to remove the unwanted pixels from an MRI brain image. In the second phase, the features related to MRI brain image are extracted using characteristics of shape, margin, and density of the MRI. In the third stage, the features of MRI brain image were reduced using principal component analysis. CBIR classification is used in this method to gain effectual results. In the first stage, retrieval images are obtained using similarity measures using the similarity between the query image features and the derived trained image features. Finally, the classification stage is an extreme learning machine with probabilistic scaling used to classify the obtained retrieval output image and the query image. The result demonstrates that the proposed CBIR approach is robust and effectual compared with other latest work.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
art. no. 20190060
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
- VelTech Dr.Rangarajan Dr.Sagunthala R&D Institute of Science and Technology, Velachery, Chennai 600042, Tamil Nadu, India
autor
- VelTech Dr. Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, India
Bibliografia
- [1] Parizel PM, van den Hauwe L, De Belder F, Van Goethem J, Venstermans C, Salgado R, Voormolen M, Van Hecke W. Magnetic resonance imaging of the brain. Berlin Heidelberg: Springer-Verlag, 2010.
- [2] Fletcher-Heath LM, Hall DL, Goldgof B, Murtagh FR. Automatic segmentation of non-enhancing brain tumors in magnetic resonance images. Artif Intell Med 2001;21:43-63.
- [3] Joseph S, John J, Balakrishnan K, Vijayaraghavan PK. Content based image retrieval system for Malayalam handwritten characters. In 2011 3rd International Conference on Electronics Computer Technology, IEEE, Vol. 5; 2011: pp. 386-390.
- [4] Zhang W, Dickinson S, Sclaroff S, Feldman J, Dunn S. Shape-based indexing in a medical image database. Biomed Image Anal 1998;221-30.
- [5] Ramamurthy B, Chandran KR. CBMIR: shape-based image retrieval using Canny edge detection and K-means clustering algorithms for medical images. Int J Eng Sci Technol 2011;3:209-12.
- [6] Liao S. Image analysis by moments. PhD thesis, University of Manitoba, Winnipeg, Manitoba, Canada, 1993.
- [7] Ghosal S, Mehrotra R. Edge detection using orthogonal moment-based operators. In: Proceedings of 11th Image, Speech and Signal Analysis (IAPR) International Conference on Pattern Recognition, vol. III, 1992, pp. 413-6.
- [8] Parades R, Keysers D, Lehman TM, Wein B, Ney H, Vidal E. Classification of medical images using local representation. In: Workshop Bildverarbeitung fur die Medizin, 2002, pp. 171-4.
- [9] Nazari MR, Fatemizadeh E. A CBIR system for human brain magnetic resonance image indexing. Int J Comput Appl 2010;7:33-37.
- [10] Habashy SM. Content-based image retrieval (CBIR) system aided tumor detection. Int J Comput Sci Eng Inform Technol Res 2013;3:329-40.
- [11] Oberoi A, Singh M. Content based image retrieval system for medical databases (CBIR-MD) – lucratively tested on endoscopy, dental and skull images. Int J Comput Sci Iss 2012;9:300.
- [12] Srilakshmi G, Reddy KR. Performance enhancement of content based medical image retrieval for MRI brain images based on hybrid approach. Int Res J Eng Technol 2015;2.
- [13] Boykov Y, Veksler O, Zabih R. Markov random fields with efficient approximations. In: IEEE Comput Soc Conf 1998;648-55.
- [14] Besag J. On the statistical analysis of dirty pictures. J Roy Stat Soc B Met 1986;48:259-302.
- [15] Wang L, Healey G. Using Zernike moments for the illumination and geometry invariant classification of multispectral texture. IEEE Trans Image Process 1998;7:196-203.
- [16] Ghosal S, Mehrotra R. Segmentation of range images: an orthogonal moment-based integrated approach. IEEE Trans Robot Autom 1993;9:385-99.
- [17] Iskander DR, Collins MJ, Davis B. Optimal modeling of corneal surfaces with Zernike polynomials. IEEE Trans Biomed Eng 2001;48:87-95.
- [18] Iskander DR, Morelande MR, Collins MJ, Davis B. Modelling of corneal surfaces with radial polynomials. IEEE Trans Biomed Eng 2002;49:320-8.
- [19] Xin Y, Liao S, Pawlak M. Geometrically robust image watermarking via pseudo-Zernike moments. In: Proceedings of 2004 Canadian Conference on Electrical and Computer Engineering, vol. 2, 2004, pp. 939-42.
- [20] Haddadnia J, Ahmadi M, Raahemifar K. An effective feature extraction method for face recognition. In: Proceedings of 2003 International Conference on Image Processing, vol. 3, 2003, pp. III-917-20.
- [21] Haddadnia J, Ahmadi M, Faez K. A feature extraction method with pseudo-Zernike moments in RBF neural network-based human face recognition system. EURASIP J Appl Signal Process 2003;890-901.
- [22] Kim Y-S, Kim W-Y. Content-based trademark retrieval system using visually salient features. In: Proceedings of 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1997, pp. 307-12.
- [23] Pang Y-H, Teoh AB, Ngo DC, Hiew F-S. Palmprint verification with moments. J WSCG 2003;12:1-3.
- [24] Zhang H, Zhu Q, Fan C, Deng D. Image quality assessment based on Prewitt magnitude. Int J Electron Commun 2013;67:799-803.
- [25] Pearson K. On lines and planes of closest fit to systems of points in space. Philos Mag 1901;2:559-72.
- [26] Jolliffe IT. Principal component analysis, 2nd ed. New York: Springer, 2002.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f69e3bc0-bd2f-4c8f-95a0-38a5ffe33251