PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of flow structure and colloidal forces on aggregation rate of small solid particles suspended in aqueous solutions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper aggregation of small solid particles in the perikinetic and orthokinetic regimes is considered. An aggregation kernel for colloidal particles is determined by solving the convection-diffusion equation for the pair probability function of the solid particles subject to simple shear and extensional flow patterns and DLVO potential field. Using the solution of the full model the applicability regions of simplified collision kernels from the literature are recognized and verified for a wide range of Péclet numbers. In the stable colloidal systems the assumption which considers only the flow pattern in a certain boundary layer around central particle results in a reasonable accuracy of the particle collision rate. However, when the influence of convective motion becomes more significant one should take into account the full flow field in a more rigorous manner and solve the convection-diffusion equation directly. Finally, the influence of flow pattern and process parameters on aggregation rate is discussed.
Rocznik
Strony
369--–389
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
  • Faculty of Chemical and Process Engineering, Warsaw University of Technology, ul. Warynskiego 1, 00-645 Warsaw, Poland
  • Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
  • Faculty of Chemical and Process Engineering, Warsaw University of Technology, ul. Warynskiego 1, 00-645 Warsaw, Poland
Bibliografia
  • 1. Bal V., 2019. Stability characteristics of nanoparticles in a laminar linear shear flow in the presence of DLVO and non-DLVO forces. Langmuir, 35, 11175–11187. DOI: 10.1021/acs.langmuir.9b01886.
  • 2. Bal V., 2020. Coagulation behavior of spherical particles embedded in laminar shear flow in presence of DLVO and non-DLVO forces. J. Colloid Interface Sci., 564, 170–181. DOI: 10.1016/j.jcis.2019.12.119.
  • 3. Bałdyga J., Jasinska M., Krasinski A., Rozen A., 2004. Effects of fine scale turbulent flow and mixing in agglomerative precipitation. Chem. Eng. Technol., 27, 315–323. DOI: 10.1002/ceat.200401993.
  • 4. Bałdyga J., Krasinski A., 2005. Precipitation of benzoic acid in continuous stirre tank – effects of agglomeration, In: Ulrich J. (Ed.), Proceedings of 16th International Symposium on Industrial Crystallization. VDI-Verlag, 411–416.
  • 5. Bałdyga J., Orciuch W., 2001. Some hydrodynamic aspects of precipitation. Powder Technol., 121, 9–19. DOI: 10. 1016/S0032-5910(01)00368-0.
  • 6. Bałdyga J., Tyl G., Bouaifi M., 2019.Aggregation efficiency of amorphous silica nanoparticles. Chem. Eng. Technol., 42, 1717–1724. DOI: 10.1002/ceat.201900091.
  • 7. Banetta L., Zaccone A., 2019. Radial distribution function of Lenard-Jones fluids in shear flow from intermediate asymptotics. Phys. Rev. E, 99, 052606. DOI: 10.1103/PhysRevE.99.052606.
  • 8. Banetta L., Zaccone A., 2020. Pair correlation function of charge-stabilized colloidal systems under sheared conditions. Colloid Polym. Sci., 298, 761–771. DOI: 10.1007/s00396-020-04609-4.
  • 9. Batchelor G.K., 1953. The theory of homogenous turbulence. Cambridge University Press, Cambridge, England.
  • 10. Batchelor G.K., 1976. Brownian diffusion of particles with hydrodynamic interaction. J. Fluid Mech., 74, 1–29. DOI: 10.1017/S0022112076001663.
  • 11. Batchelor G.K., 1980. Mass transfer from small particles suspended in turbulent fluid. J. Fluid Mech., 98, 609–623. DOI: 10.1017/S0022112080000304.
  • 12. Batchelor G.K., Green J.T., 1972. The hydrodynamic interaction of two small freely-moving spheres in linear flow field. J. Fluid Mech., 56, 375–400. DOI: 10.1017/S0022112072002927.
  • 13. Camp T.R., Stein P.C., 1943. Velocity gradients and internal work in fluid motion. J. Boston Soc. Civ. Eng., 30, 219–237.
  • 14. Derjaguin B.V., Landau L.D., 1941. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim URSS, 14, 633–660.
  • 15. FuchsN., 1934. Uber die Stabilitat undAufladung derAerosole. Z. Physik, 89, 736–743. DOI: 10.1007/BF01341386.
  • 16. Hamaker H.C., 1937. The London–van der Waals attraction between spherical particles. Physica, 4, 1058–1072. DOI: 10.1016/S0031-8914(37)80203-7.
  • 17. Hogg R., Healy T., Furstenau D.W., 1966. Mutual coagulation of colloidal dispersions. Trans. Faraday Soc., 62,1638–1651. DOI: 10.1039/tf9666201638.
  • 18. Hulburt H.M., Katz S., 1964. Some problems in particle technology: A statistical mechanical formulation. Chem.Eng. Sci., 19, 555–574. DOI: 10.1016/0009-2509(64)85047-8.
  • 19. Lattuada M., Morbidelli M., 2011. Effect of repulsive interactions on the rate of doublet formation of colloidal nanoparticles in the presence of convective transport. J. Colloid Int. Sci., 355, 42–53. DOI: 10.1016/j.jcis.2010.11.070.
  • 20. Lazzari S., Nicoud L., Jaquet B., Lattuada M., Morbidelli M., 2016. Fractal-like structures in colloid science. Adv. Colloid Interface Sci., 235, 1–13. DOI: 10.1016/j.cis.2016.05.002.
  • 21. Melis S., Verduyn M., Storti G., Morbidelli M., Bałdyga J., 1999. Effect of fluid motion on the aggregation of small particles subject to interaction forces. AIChE J., 45, 1383–1393. DOI: 10.1002/aic.690450703.
  • 22. Nicoud L., Lattuada M., Lazzari S., Morbidelli M., 2015. Viscosity scaling in concentrated dispersions and its impact on colloidal aggregation. Phys. Chem. Chem. Phys., 17, 24392–24402. DOI: 10.1039/c5cp03942h.
  • 23. Saffman P.G., Turner J.S., 1956. On collision of drops in turbulent clouds. J. Fluid Mech, 1, 16–30. DOI: 10.1017/S0022112056000020.
  • 24. Smoluchowski M., 1916. Zur Theorie der Zustandsgleichungen. Ann. Phys., 353, 1098–1102. DOI: 10.1002/andp.19163532407.
  • 25. Smoluchowski M., 1917. Versuch einer mathematischen Teorie der Koagulationskinetik kolloider Losungen. Z. Phys. Chem., 92U, 129–168. DOI: 10.1515/zpch-1918-9209.
  • 26. Spielman L.A., 1970. Viscous interactions in Brownian coagulation. J. Colloid Interface Sci., 33, 562–571. DOI: 10.1016/0021-9797(70)90008-1.
  • 27. Swift D.L., Friedlander S.K., 1964. The coagulation of hydrosols by brownian motion and laminar shear flow. J. Colloid Sci., 19, 621–647. DOI: 10.1016/0095-8522(64)90085-6.
  • 28. van de Ven T.G.M., Mason S.G., 1976. The microrheology of colloidal dispersions: IV. Pairs of interacting spheres in shear flow. J. Colloid Interface Sci., 57, 505–516. DOI: 10.1016/0021-9797(76)90229-0.
  • 29. Verwey E.J.W., Overbeek J.T.G., 1948. Theory of the stability of lyophobic colloids. Elsevier, Amsterdam, Netherlands.
  • 30. Zaccone A.,Wu H., Gentili D., Morbidelli M., 2009. Theory of activated-rate processes under shear with application to shear-induced aggregation of colloids. Phys. Rev. E, 80, 051404. DOI: 10.1103/PhysRevE.80.051404.
  • 31. Zeichner G.R., Schowalter W.R., 1977. Use of trajectory analysis to study stability of colloidal dispersions in flow fields. AIChE J., 23, 243–254. DOI: 10.1002/aic.690230306.
  • 32. Zinchenko A.Z., Davis R.H., 1995. Collision rates of spherical drops of particles in a shear flow at arbitrary Peclet numbers. Phys. Fluids, 7, 2310–2327. DOI: 10.1063/1.868745.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f69a6529-fd22-4361-9776-6b2ea512d138
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.