PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Semi-industrial simulation of hot rolling and controlled cooling of Mn-Al TRIP steel sheets

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the work is a semi-industrial physical simulation of thermomechanical rolling and controlled cooling of advanced high-strength steels with increased Mn and Al content. Design/methodology/approach: Four steels of various Mn and Nb concentration were thermomechanically rolled in 3 and 5 passes using a modern LPS line for physical simulation of hot rolling at a semi-industrial scale. The hot deformation course is fully automated as well as controlled cooling applied directly after finishing rolling. Temperature-time and force-energetic parameters of hot rolling were continuously registered and assessed. Findings: The applied line consisting of two-high reversing mill, roller tables with heating panels, cooling devices and controlling-recording systems reflects industrial hot strip rolling parameters sufficiently. Reduction values and temperature-time regimes are similar to those used in industrial practice whereas strain rate is limited to about 10 s-1 what requires taking into account during comparison. All the steels investigated have high total pressure forces due to the high total content of alloying elements. The critical factor making it possible to obtain high-quality sheet samples with a thickness up to 3.3 mm is applying isothermal heating panels which decrease a cooling rate of thin sheets. Research limitations/implications: The real complete simulation of hot strip rolling requires extension of a used line with a further module for simulation of continuous finishing rolling stages. The work is in progress. Practical implications: The results can be successfully utilized in industrial hot rolling and controlled cooling practices after necessary modifications. Originality/value: The efficient semi-industrial physical simulation of hot strip thermomechanical rolling of some new model AHSS grades containing increased Mn and Al content as well as Nb microadditions was presented.
Rocznik
Strony
38--47
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Institute for Ferrous Metallurgy, ul. K. Miarki 12-14, 44-100 Gliwice, Poland
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] Z. Gronostajski, A. Niechajowicz, S. Polak, Prospects for the use of new-generation steels of the AHSS type for collision energy absorbing components, Archives of Metallurgy and Materials 55 (2010) 221-230.
  • [2] J. Adamczyk, A. Grajcar, Effect of heat treatment conditions on the structure and mechanical properties of DP-type steel, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 305-308.
  • [3] A. Grajcar, Structural and mechanical behaviour of TRIP steel in hot-working conditions, Journal of Achievements in Materials and Manufacturing Engineering 30 (2008) 27-34.
  • [4] B. Gajda, A.K. Lis, Intercritical annealing with isothermal holding of TRIP CMnAlSi steel, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 439-442.
  • [5] A. Grajcar, Effect of hot-working in the γ+α range on a retained austenite fraction in TRIP-aided steel, Journal of Achievements in Materials and Manufacturing Engineering 22/2 (2007) 79-82.
  • [6] L.A. Dobrzański, W. Borek, Thermo-mechanical treatment of Fe-Mn-(Al,Si) TRIP/TWIP steels, Archives of Civil and Mechanical Engineering 12 (2012) 299-304.
  • [7] M. Opiela, A. Grajcar, W. Krukiewicz, Corrosion behaviour of Fe-Mn-Si-Al austenitic steel in chloride solution, Journal of Achievements in Materials and Manufacturing Engineering 33/2 (2009) 159-165.
  • [8] L.A. Dobrzański, A. Grajcar, W. Borek, Hot-working behaviour of high-manganese austenitic steels, Journal of Achievements in Materials and Manufacturing Engineering 31/1 (2008) 7-14.
  • [9] T. Bator, Z. Muskalski, S. Wiewiórowska, J.W. Pilarczyk, Influence of the heat treatment on the mechanical properties and structure of TWIP steel in wires, Archives of Materials Science and Engineering 28/6 (2007) 337-340.
  • [10] L.A. Dobrzański, W. Borek, M. Ondrula, Thermo-mechanical processing and microstructure evolution of high-manganese austenitic TRIP-type steels, Journal of Achievements in Materials and Manufacturing Engineering 53/2 (2012) 59-66.
  • [11] A. Grajcar, M. Opiela, G. Fojt-Dymara, The influence of hot-working conditions on a structure of high-manganese steel, Archives of Civil and Mechanical Engineering 9/3 (2009) 49-58.
  • [12] P.J. Gibbs, E. De Moor, M.J. Merwin, B. Clausen, J.G. Speer, D.K. Matlock, Austenite stability effects on tensile behaviour of manganese-enriched-austenite transformation-induced plasticity steel, Metallurgical and Materials Transactions A 42 (2011) 3691-3702.
  • [13] A. Grajcar, R. Kuziak, Softening kinetics in Nb-microalloyed TRIP steels with increased Mn content, Advanced Materials Research 314-316 (2011) 119-122.
  • [14] P.S. Bandyopadhyay, S.K. Ghosh, S. Kundu, S. Chatterjee, Evolution of microstructure and mechanical properties of thermomechanically processed ultrahigh-strength steel, Metallurgical and Materials Transactions A 42 (2011) 2742-2752.
  • [15] A. Grajcar, E. Kalinowska-Ozgowicz, M. Opiela, B. Grzegorczyk, K. Gołombek, Effects of Mn and Nb on the macro- and microsegregation in high-Mn high-Al content TRIP steels, Archives of Materials Science and Engineering 49/1 (2011) 5-14.
  • [16] K. Sugimoto, B. Yu, Y. Mukai, S. Ikeda, Microstructure and formability of aluminum bearing TRIP-aided steels with annealed martensite matrix, ISIJ International 45/8 (2005) 1194-1200.
  • [17] A. Grajcar, R. Kuziak, W. Zalecki, Third generation of AHSS with increased fraction of retained austenite for the automotive industry, Archives of Civil and Mechanical Engineering 12 (2012) 334-341.
  • [18] S. Hashimoto, S. Ikeda, K. Sugimoto, S. Miyake, Effects of Nb and Mo addition to 0.2%C-1.5%Si-1.5%Mn steel on mechanical properties of hot rolled TRIP-aided steel sheets, ISIJ International 44/9 (2004) 1590-1598.
  • [19] A. Grajcar, M. Opiela, Influence of plastic deformation on CCT-diagrams of low-carbon and medium-carbon TRIP steel, Journal of Achievements in Materials and Manufacturing Engineering 29/1 (2008) 71-78.
  • [20] B. Garbarz, W. Burian, D. Woźniak, Semi-industrial simulation of in-line thermomechanical processing and heat treatment of nano-duplex bainite-austenite steel, Steel Research International, Proceedings of the 14th International Conference on Metal Forming, Cracow, 2012, 1251-1254.
  • [21] F. Siciliano, L.L. Leduc, Modeling of the microstructural evolution and mean flow stress during thin slab casting/direct rolling of niobium microalloyed steels, Materials Science Forum 500-501 (2005) 221-228.
  • [22] R.M. Skolly, E.I. Poliak, Aspects of production hot rolling of Nb microalloyed high Al high strength steels, Materials Science Forum 500-501 (2005) 187-194.
  • [23] M. Adamczyk, D. Kuc, E. Hadasik, Modelling of structure changes in TRIP type steel during hot deformation, Archives of Civil and Mechanical Engineering 8/3 (2008) 5-13.
  • [24] E. Hadasik, R. Kuziak, R. Kawalla, M. Adamczyk, M. Pietrzyk, Rheological model for simulation of hot rolling of new generation steel strip for automotive industry, Steel Research International 77 (2006) 927-933.
  • [25] D. Liu, F. Fazeli, M. Militzer, W.J. Poole, A microstructure evolution for hot rolling of a Mo-TRIP steel, Metallurgical and Materials Transactions A 38A (2007) 894-909.
  • [26] P. Suwanpinij, U. Prahl, W. Bleck, R. Kawalla, Fast algorithms for phase transformations in dual phase steels on a hot strip mill run-out table (ROT), Archives of Civil and Mechanical Engineering 12 (2012) 305-311.
  • [27] D.B. Futch, G.A. Thomas, J.G. Speer, K.O. Findley, Thermomechanical simulation of hot rolled Q&P sheet steels, Iron and Steel Technology 9/12 (2012) 101-106.
  • [28] A. Grajcar, R. Kuziak, Effects of Nb microaddition and thermomechanical treatment conditions on hot deformation behavior and microstructure of Mn-Al TRIP steels, Advanced Science Letters 15 (2012) 332-336.
  • [29] S. Vervynckt, K. Verbeken, P. Thibaux, Y. Houbaert, Evaluation of the austenite recrystallization by multideformation and double deformation tests, Steel Research International 82/4 (2011) 369-378.
  • [30] J.G. Speer, E. De Moor, K.O. Findley, D.K. Matlock, B.C. De Cooman, D.V. Edmonds, Analysis of microstructure evolution in quenching and partitioning automotive sheet steel, Metallurgical and Materials Transactions A 42 (2011) 3591-3601.
  • [31] A. Nowotnik, T. Siwecki, The effect of TMCP parameters on the microstructure and mechanical properties of Ti-Nb microalloyed steel, Journal of Microscopy 237 (2010) 258-262.
  • [32] R. Kuziak, M. Pietrzyk, Physical and numerical simulation of the manufacturing chain for the DP steel strips, Steel Research International, Technology of Plasticity (2011) 756-761.
  • [33] M. Militzer, E.B. Hawbolt, T.R. Meadowcroft, Microstructural model for hot strip rolling of high-strength low-alloy steels, Metallurgical and Materials Transactions A 31 (2000) 1247-1259.
  • [34] D. Woźniak, B. Garbarz, The line for semi-industrial simulation of manufacturing of metal alloys and products, IMŻ Reports 1 (2010) 61-67 (in Polish).
  • [35] D. Woźniak, M. Burdek, J. Gawor, M. Adamczyk, R. Palus, Development of methodology of semi-industrial simulation of hot rolling and thermo-mechanical treatment of plates and bars in the module B-LPS comprising one-stand reversing mill, auxiliary devices and controlling-recording systems, IMŻ Reports 1 (2012) 110-117 (in Polish).
  • [36] Z. Jaglarz, W. Leskiewicz, M. Morawiecki, Technology and facilities of flat products rolling mills, Publishers “Śląsk”, Katowice, 1979 (in Polish).
  • [37] F. Siciliano, E.I. Poliak, Modeling of the resistance to hot deformation and the effects of microalloying in high-Al steels under industrial conditions, Materials Science Forum 500-501 (2005) 195-202.
  • [38] A. Grajcar, M. Kamińska, M. Opiela, P. Skrzypczyk, B. Grzegorczyk, E. Kalinowska-Ozgowicz, Segregation of alloying elements in thermomechanically rolled medium-Mn multiphase steels, Journal of Achievements in Materials and Manufacturing Engineering 55/2 (2012) 256-264.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f698711a-de17-43cc-9dc2-c85792cf4738
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.