PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Ceramic Brush Treatment on the Surface Quality and Edge Condition of Aluminium Alloy after Abrasive Waterjet Machining

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Material separation is one of the basic technological operations. Abrasive water jet machining (AWJM) is a universal cutting method; it is used for almost all structural materials, ranging from easy-to-cut materials such as aluminium alloys to materials that are difficult-to-cut after thermal treatment. In terms of assembly accuracy and product safety, surface quality and edge condition after cutting are of vital importance. Machining with ceramic brushes mounted on the machining centre is one of the methods for improving surface quality and removing burrs after AWJM. The aim of this study is to analyse the influence of machining conditions with ceramic brushes on the surface quality and effectiveness of deburring after abrasive water jet machining of EN AW-7075 aluminium alloy. For all tested brushing treatment conditions lower roughness parameters were obtained compared to the base surface after AWJM. A positive deburring effect was achieved for all fibre types after one brush pass. For the brush with the lowest stiffness fibres a rounded edge was obtained, while for the fibres with higher stiffness – the edges were chamfered.
Słowa kluczowe
Twórcy
  • Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • 1. Zagórski I., Kłonica M., Kulisz M., Łoza K. Effect of the AWJM Method on the Machined Surface Layer of AZ91D Magnesium Alloy and Simulation of Roughness Parameters Using Neural Networks. Materials. 2018;11:2111. DOI: 10.3390/ ma11112111.
  • 2. Joel C., Jeyapoovan T., Praneeth Kumar P. Experimentation and Optimization of Cutting Parameters of Abrasive Jet Cutting on AA6082 through Response Surface Methodology. Mater. Today Proc. 2021;44:3564–3570. DOI: 10.1016/j.matpr.2020.09.452.
  • 3. Niranjan C.A., Srinivas S., Ramachandra M. Effect of Process Parameters on Depth of Penetration and Topography of AZ91 Magnesium Alloy in Abrasive Water Jet Cutting. J. Magnes. Alloys. 2018;6:366–374. DOI: 10.1016/j.jma.2018.07.001.
  • 4. Srinivasan R., Jacob V., Muniappan A., Madhu S., Sreenevasulu M. Modeling of Surface Roughness in Abrasive Water Jet Machining of AZ91 Magnesium Alloy Using Fuzzy Logic and Regression Analysis. Mater. Today Proc. 2020;22:1059–1064. DOI: 10.1016/j.matpr.2019.11.295.
  • 5. Zaleski K., Skoczylas A., Ciecieląg K. The Investigations of the Surface Layer Properties of C45 Steel After Plasma Cutting and Centrifugal Shot Peening. In; 2020;172–185.
  • 6. Maneiah D., Shunmugasundaram M., Raji Reddy A. Zareena Begum Optimization of Machining Parameters for Surface Roughness during Abrasive Water Jet Machining of Aluminium/Magnesium Hybrid Metal Matrix Composites. Mater. Today Proc. 2020;27:1293–1298. DOI: 10.1016/j.matpr.2020.02.264.
  • 7. Bergs T., Müller U., Barth S., Ohlert M. Experimental Analysis on Vibratory Finishing of Cemented Carbides. Manuf. Lett. 2021;28:21–24. DOI: 10.1016/j.mfglet.2021.02.004.
  • 8. Aurich J.C., Dornfeld D., Arrazola P.J., Franke V., Leitz L., Min S. Burrs—Analysis, Control and Removal. CIRP Ann. 2009;58:519–542. DOI:10.1016/j.cirp.2009.09.004.
  • 9. Swat M., Brünnet H., Lyubenova N., Schmitt J., Diebels S., Bähre D. Improved Process Control and Model of Axial Forces of One-Way Abrasive Flow Machining. Procedia CIRP. 2014;14:19–24, DOI: 10.1016/j.procir.2014.03.106.
  • 10. Kwon B.C., Kim K.H., Kim K.H., Ko S.L. New Abrasive Deburring Method Using Suction for Micro Burrs at Intersecting Holes. CIRP Ann. Manuf. Technol. 2016;65:145–148. DOI: 10.1016/j. cirp.2016.04.085.
  • 11. Yang M., Choi J., Lee J., Hur N., Kim D. Wet Blasting as a Deburring Process for Aluminum. J. Mater. Process. Technol. 2014;214:524–530. DOI:10.1016/j.jmatprotec.2013.09.011.
  • 12. Stango R.J. Filamentary Brushing Tools for Surface Finishing Applications. Met. Finish. 2002;100:82– 91. DOI: 10.1016/S0026-0576(02)82007-4.
  • 13. Novotný F., Horák M., Starý M. Abrasive Cylindrical Brush Behaviour in Surface Processing. Int. J. Mach. Tools Manuf. 2017;118–119:61–72. DOI: 10.1016/j.ijmachtools.2017.03.006.
  • 14. Matuszak J., Zaleski K. Analysis of Deburring Effectiveness and Surface Layer Properties around Edges of Workpieces Made of 7075 Aluminium Alloy. Aircr. Eng. Aerosp. Technol. 2018;90:515– 523. DOI:10.1108/AEAT-05-2016-0074.
  • 15. Ciecieląg K., Kecik K., Zaleski K. Defects Detection from Time Series of Cutting Force in Composite Milling Process by Recurrence Analysis. J. Reinf. Plast. Compos. 2020;39:890–901. DOI: 10.1177/0731684420935985.
  • 16. Matuszak J., Klonica M., Zagorski I. Effect of Brushing Conditions on Axial Forces in Ceramic Brush Surface Treatment. In Proceedings of the 2019 IEEE 5th International Workshop on Metrology for AeroSpace (MetroAeroSpace); IEEE: Torino, Italy, June 2019, 644–648.
  • 17. Matuszak J., Kłonica M., Zagórski I. Measurements of Forces and Selected Surface Layer Properties of AW-7075 Aluminum Alloy Used in the Aviation Industry after Abrasive Machining. Materials 2019;12:3707. DOI: 10.3390/ma12223707.
  • 18. Zawada-Michałowska M., Józwik J., Legutko S., Mika D., Pieśko P., Pytka J. Cutting Force during Surface Layer Milling of Selected Aluminium Alloys. Materials. 2020;13:5725. DOI: 10.3390/ma13245725.
  • 19. Rusinek R., Zaleski K. Dynamics of Thin-Walled Element Milling Expressed by Recurrence Analysis. Meccanica 2016, 51, 1275–1286. DOI: 10.1007/ s11012-015-0293-y.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f697f4b0-9557-4579-a3af-001d103b4a8c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.