PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Utilization of an energy-resolving detection system for mammography applications : a preliminary study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Breast cancer remains one of the major causes of mortality among female cancer patients. This fact caused a spark in the medical field, which in turn helped to improve the diagnostic and treatment of breast cancer patients over the years making this field always active with new ideas and innovative methods. In our study, a new method was explored using an energy-resolving detection system made from a NaI (Tl) scintillation detector to detect the gamma photons from an Am-241 radiation source to try and construct an image by scanning the American College of Radiology (ACR) mammography phantom. In addition to the experimental work, a Geant4 Application for Tomographic Emission (GATE) toolkit was used to investigate more complex options to improve the image quality of mammographic systems, which is limited by the experimental setup. From the experimental setup, the researchers were able to construct an image using the 26.3 keV and the 59.5 keV energy photons, to show the largest size tumour (12 mm) in the ACR phantom. With an improved setup in the simulation environment, the majority of the ACR phantom tumours was visible using both energy windows from the 26.3 keV and the 59.5 keV, where the 26.3 keV yielded better quality images showing four tumours compared to three when using 59.5 keV. The simulation results were promising; however, several improvements need to be incorporated into the experimental work so that the system can generate high-resolution mammographic images similar to the ones obtained by the GATE simulation setup.
Czasopismo
Rocznik
Strony
35--40
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
  • King Abdulaziz University Faculty of Engineering, Nuclear Engineering Department Jeddah 21589, Saudi Arabia
  • King Abdulaziz University Center for Training and Radiation Prevention Jeddah 21589, Saudi Arabia
  • King Abdulaziz University Faculty of Engineering, Nuclear Engineering Department Jeddah 21589, Saudi Arabia
  • Universität zu Lübeck Institute of Medical Engineering Lübeck, Germany
  • King Abdulaziz University Electrical and Computer Engineering Department Jeddah 21589, Saudi Arabia
  • King Abdulaziz University Faculty of Engineering, Nuclear Engineering Department Jeddah 21589, Saudi Arabia
  • King Abdulaziz University Faculty of Engineering, Nuclear Engineering Department Jeddah 21589, Saudi Arabia
  • King Abdulaziz University Center for Training and Radiation Prevention Jeddah 21589, Saudi Arabia
Bibliografia
  • 1. Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D. M., Forman, D., & Bray, F. (2015). Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 136(5), E359–E386.DOI: 10.1002/ijc.29210.
  • 2. Siegel, R. L., Miller, K. D., & Jemal, A. (2018). Cancer statistics. CA Cancer J. Clin., 68, 7–30.
  • 3. Brem, R. F., Petrovitch, I., Rapelyea, J. A., Young, H., Teal, C., & Kelly, T. (2007). Breast-specific gamma imaging with 99mTc-Sestamibi and magnetic resonance imaging in the diagnosis of breast cancer – a comparative study. Breast J., 13(5), 465–469. DOI: 10.1111/j.1524-4741.2007.00466.x.
  • 4. Bushberg, J. T., Seibert, J. A., Leidholdt, E. M. Jr., Boone, J. M., & Goldschmidt, E. J. (2003). The essential physics of medical imaging. Med. Phys., 30, 1936.
  • 5. Lewin, J. M., D’Orsi, C. J., Hendrick, R. E., Moss, L. J., Isaacs, P. K., Karellas, A., & Cutter, G. R. (2002). Clinical comparison of full-fi eld digital mammography and screen-film mammography for detection of breast cancer. Am. J. Roentgenol., 179(3), 671–677. DOI:10.2214/ajr.179.3.1790671.
  • 6. Obenauer, S., Luftner-Nagel, S., von Heyden, D., Munzel, U., Baum, F., & Grabbe, E. (2002). Screen film vs full-field digital mammography: image quality, detectability and characterization of lesions. Eur. Radiol., 12(7), 1697–1702. DOI: 10.1007/s00330-001-1269-y.
  • 7. Niklason, L. T., Christian, B. T., Niklason, L. E., Kopans, D. B., Castleberry, D. E., Opsahl-Ong, B. H., Landberg, C. E., Slanetz, P. J., Giardino, A. A., Moore, R., Albagli, D., DeJule, M. C., Fitzgerald, P. F., Fobare, D. F., Giambattista, B. W., Kwasnick, R. F., Liu, J., Lubowski, S. J., Possin, G. E., Richotte, J. F., Wei, C. Y., & Wirth, R. F. (1997). Digital tomosynthesis in breast imaging. Radiology, 205(2), 399–406. DOI: 10.1148/radiology.205.2.9356620.
  • 8. Skaane, P., Bandos, A. I., Gullien, R., Eben, E. B., Ekseth, U., Haakenaasen, U., Izadi, M., Jebsen, I. N., Jahr, G., Krager, M., Niklason, L. T., Hofvind, S., & Gur, D. (2013). Comparison of digital mammography alone and digital mammography plus tomosynthesis in a population-based screening program. Radiology, 267(1), 47–56. DOI: 10.1148/radiol.12121373.
  • 9. Rafferty, E. A., Park, J. M., Philpotts, L. E., Poplack, S. P., Sumkin, J. H., Halpern, E. F., & Niklason, L. T. (2013). Assessing radiologist performance using combined digital mammography and breast tomosynthesis compared with digital mammography alone: Results Fig. 8. A magnified image of the largest microcalcifi cation cluster. Only four out of six microcalcifications are detected. of a multicenter, multireader trial. Radiology, 266(1), 104–113. DOI: 10.1148/radiol.12120674.
  • 10. Alyassin, A. M., Maqsoud, H. A., Mashat, A. M., Al-Mohr, A. -S., & Abdulwajid, S. (2013). Feasibility study of gamma-ray medical radiography. Appl. Radiat. Isot., 72, 16–29. DOI: 10.1016/j.apraiso.2012.11.001.
  • 11. Taha, E. E. M., & Alyassin, A. M. A. (2016). Feasibility of a novel gamma radiography mammo system. Insights Med. Phys., 1, 1–8.
  • 12. Wagenaar, D. J., Chowdhury, S., Engdahl, J. C., & Burckhardt, D. D. (2003). Planar image quality comparison between a CdZnTe prototype and a standard NaI(Tl) gamma camera. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Detect. Assoc. Equip., 505(1/2), 586–589. DOI: 10.1016/S0168-9002(03)01153-7.
  • 13. Taillefer, R. (2021). Scintillation cameras: A new clinical era has come. J. Nucl. Cardiol. DOI: 10.1007/s12350-021-02660-4.
  • 14. Green, F. H., Veale, M. C., Wilson, M. D., Seller, P., Scuffham, J., & Pani, S. (2016). Scatter free imaging for the improvement of breast cancer detection in mammography. Phys. Med. Biol., 61(20), 7246–7262.DOI: 10.1088/0031-9155/61/20/7246.
  • 15. Russo, P. (2002). Hybrid semiconductor pixel detectors for low- and medium-energy X- and gamma-ray single photon imaging using the Medipix Read-Out Chip. In J. P. Hornak (Ed.), Encyclopedia of imaging science and technology. New York: John Wiley & Sons, Inc.
  • 16. Pfeiffer, K. -F. G., Giersch, J., & Anton, G. (2004). How good is better? A comparison between the Medipix1 and the Medipix2 chip using mammographic phantoms. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Detect. Assoc. Equip., 531(1/2),246–250. DOI: 10.1016/j.nima.2004.06.012.
  • 17. Manuilskiy, A., Norlin, B., Nilsson, H. -E., & Fröjdh, C. (2004). Spectroscopy applications for the Medipix photon counting X-ray system. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Detect. Assoc. Equip., 531(1/2), 251–257. DOI: 10.1016/j.nima.2004.06.013.
  • 18. Procz, S., Lubke, J., Zwerger, A., & Fauler, A. (2010). Energy selective X-ray imaging with Medipix. In IEEE Nuclear Science Symposium & Medical Imaging Conference 2010, pp. 3846–3851. DOI: 10.1109/NSSMIC.2010.5874533.
  • 19. Yang, Q., Wang, X., Kuang, Z., Zhang, Ch., Yang, Y., & Du, J. (2021). Evaluation of two SiPM arrays for depth-encoding PET detectors based on dual-ended readout. IEEE Trans. Radiat. Plasma Med. Sci., 5(3),315–321. DOI: 10.1109/TRPMS.2020.3008710.
  • 20. McLelland, R., Hendrick, R. E., Zinninger, M. D., & Wilcox, P. A. (1991). The American College of Radiology Mammography Accreditation Program. Am. J. Roentgenol., 157(3), 473–479. DOI: 10.2214/ajr.157.3.1872231.
  • 21. Basunia, M. S. (2006). Nuclear Data Sheets for A =237. Nucl. Data Sheets, 107, 2323–2422.
  • 22. Jan, S., Santin, G., Strul, D., Staelens, S., Assie, K., Autret, D., Avner, S., Barbier, R., Bardies, M., Bloomfi eld, P. M., Brasse, D., Breton, V., Bruyndonckx, P., Buvat, I., Chatziioannou, A. F., Choi, Y., Chung, Y. H., Comtat, C., Donnarieix, D., Ferrer, L., Glick, S. J., Groiselle, C. J., Guez, D., Honore, P. -F., KerhoasCavata, S., Kirov, A. S., Kohli, V., Koole, M., Krieguer, M., van der Laan, D. J., Lamare, F., Largeron, G., Lartizien, C., Lazaro, D., Maas, M. C., Maigne, L., Mayet, F., Melot, F., Merheb, C., Pennacchio, E., Perez, J., Pietrzyk, U., Rannou, F. R., Rey, M., Schaart, D. R., Schmidtlein, C. R., Simon, L., Song, T. Y., Vieira, J. -M., Visvikis, D., Van de Walle, R., Wieers, E., & Morel, C. (2004). GATE -Geant4 application for tomographic emission: a simulation toolkit for PET and SPECT. Phys. Med. Biol., 49(19), 4543–4561.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6969e54-0cff-4c98-8701-70ae63c776b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.