PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zastosowanie nanocząstek cynku jako substancji aktywnej w leczeniu trądziku i regeneracji tkanki łącznej

Identyfikatory
Warianty tytułu
EN
Application of zinc nanoparticles as an active substance for acne treatment and connective tissue regeneration
Języki publikacji
PL
Abstrakty
PL
Skóra, jako największy organ ludzkiego ciała, odgrywa kluczową rolę w obronie organizmu przed czynnikami zewnętrznymi. Z tego powodu podlega ona częstym uszkodzeniom, takim jak oparzenia czy urazy, które mogą prowadzić do powstania blizn. Najczęściej przejawiającym się powszechnym zagrożeniem dla prawidłowego funkcjonowania tkanki łącznej jest trądzik pospolity. Jednym ze sposobów zwalczania zapalenia skóry powstałego na wskutek trądziku oraz wspomagania regeneracji tkanki jest stosowanie biomateriałów polimerowych zawierających nanocząstki cynku (n-ZnO). Ze względu na właściwości antyoksydacyjne oraz przeciwzapalne wykazują one dużą skuteczność w walce z trądzikiem. W pracy przedstawiono przegląd literatury dotyczącej charakterystyki n-ZnO, ich oddziaływania na skórę oraz możliwości łączenia z fazą polimerową w celu otrzymania biomateriałów wspomagających regenerację tkanki łącznej.
EN
Skin, as the largest organ of the human body, plays a key role in the body’s defense against external agents. For this reason, it is subject to frequent damage, such as burns or injuries, which can lead to the formation of scars. The most frequently displayed threat to the proper functioning of connective tissue is acne vulgaris. One way to combat acne-induced dermatitis and promote tissue regeneration is to use polymeric biomaterials containing zinc nanoparticles (n-ZnO). Due to their antioxidant and anti-inflammatory properties, they have demonstrated high efficacy against acne. A review of the literature on the characteristics of n-ZnOs, their effects on the skin and the possibility of combining them with a polymeric phase in order to obtain biomaterials that support connective tissue regeneration were presented.
Rocznik
Strony
16--21
Opis fizyczny
Bibliogr. 68 poz., fig.tab.
Twórcy
  • Katedra Inżynierii Materiałowej, Wydział Inżynierii Materiałowej i Fizyki, Politechnika Krakowska im. Tadeusza Kościuszki, Kraków
  • Katedra Inżynierii Materiałowej, Wydział Inżynierii Materiałowej i Fizyki, Politechnika Krakowska im. Tadeusza Kościuszki, Kraków
  • Szkoła Doktorska, Katedra Inżynierii Materiałowej, Wydział Inżynierii Materiałowej i Fizyki, Politechnika Krakowska im. Tadeusza Kościuszki, Kraków
Bibliografia
  • [1] Han B., Fang W.H., Zhao S., Yang Z., Hoang B.X.: Zinc sulfide nanoparticles improve skin regeneration. Nanomedicine (2020) 102263. doi: 10.1016/j.nano.2020.102263.
  • [2] Tottoli E.M., Dorati R., Genta I., Chiesa E., Pisani S., Conti B.: Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics 12 (8) (2020) 1–30.
  • [3] Karimi K., Odhav A., Kollipara R., Fike J., Stanford C., Hall J.C.: Acute cutaneous. A guide to early diagnosis and treatment. J. Cutan. Med. Surg. 21 (5) (2017) 425–437.
  • [4] Sivamani K., Shirakawa Garcia M., Rivkah Isseroff R.: Cell attachments. Desmosomes, hemidesmosomes (2007).
  • [5] Broughton G., Janis J.E., Attinger C.E.: Wound healing. An overview. Plast. Reconstr. Surg. 117 (7 Suppl) (2006) 1e-S-32e-S.
  • [6] Childs D.R., Murthy A.S.: Overview of wound healing and management. Surg. Clin. North Am. 97 (1) (2017) 189–207.
  • [7] Haraźna K.: Charakterystyka fizykochemiczna i biologiczna poli(3- -hydroksyoktanianu) modyfikowanego diklofenakiem – zastosowanie w procesach regeneracji tkanki kostnej oraz skóry (2023).
  • [8] Jiang D., Rinkevich Y.: Scars or regeneration? Dermal fibroblasts as drivers of diverse skin wound responses. Int. J. Mol. Sci. 21 (2) (2020) 617.
  • [9] Moradi Tuchayi S., Makrantonaki E., Ganceviciene R., Dessinioti C., Feldman S.R., Zouboulis C.C.: Acne vulgaris. Nat. Rev. Dis. Primers. (2015) 15029.
  • [10] Danielle Well B.: Acne vulgaris. A review of causes and treatment options. Nurse Pract. 38 (10) (2013) 22–31.
  • [11] Saitta P., Keehan P., Yousif J., Way B.V., Grekin S., Brancaccio R.: An update on the presence of psychiatric comorbidities in acne patients. Part 2. Depression, anxiety, and suicide. Cutis 88 (2011) 92–97.
  • [12] Degitz K., Placzek M., Borelli C., Plewig G.: Pathophysiology of acne. JDDG 5 (2007) 316–323.
  • [13] Jeremy A.H.T., Holland D.B., Roberts S.G., Thomson K.F., Cunliffe W.J.: Inflammatory events are involved in acne lesion initiation. J. Investig. Dermatol. 121 (1) (2003) 20–27.
  • [14] Schlecht S., Freudenberg M.A., Galanos C.: Culture and biological activity of Propionibacterium acnes. Infections 25 (1997) 247–249.
  • [15] Tunkell A.R., Scheld W.M.: Pathogenesis and pathophysiology of bacterial meningitis. Clin. Microbiol. Rev. 6 (2) (1993) 118–136.
  • [16] Huber-Spitzy V., Arocker-Mettinger E., Herkner K., Schiffbfinker M., Georgiew L., Steinkogler F.J. et al.: Originalia diagnosis and therapy of bacterial endophthalmitis, and serum levels of inflammation markers. Infection 20 (30) (1992) 122–127.
  • [17] Pulverer G., Roszkowski W., Beuth H.J., Ko H.L., Quie P.: Granulocyte activating factor released from Propionibacterium acnes. A possible mediator of inflammation in acne vulgaris. Zentralbl. Bakteriol., Mikrobiol. Hyg., Abt. 1, Orig A 270 (1988) 246–251.
  • [18] Pruss A., Kwiatkowski P., Masiuk H., Giedrys-Kalemba S.: Częstość występowania i lekowrażliwość szczepów Propionibacterium acnes izolowanych ze zmian trądzikowych. Pomeranian J. Life Sci. 64 (3) (2018) 33–37.
  • [19] Bojar R.A., Holland K.T.: Acne and propionibacterium acnes. Clin. Dermatol. 22 (2004) 375–379.
  • [20] Jugeau S., Tenaud I., Knol A.C., Jarrousse V., Quereux G., Khammari A. et al.: Induction of toll-like receptors by Propionibacterium acnes. Brit. J. Dermatol. 153 (2005) 1105–1113.
  • [21] Kim J., Ochoa M.-T., Krutzik S.R., Takeuchi O., Uematsu S., Legaspi A.J. et al.: Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. J. Immunol. 169 (2002) 1535–1541.
  • [22] Perry A., Lambert P.: Propionibacterium acnes. Infection beyond the skin. Expert Rev. Anti. Infect. Ther. 9 (12) (2011) 1149–1156.
  • [23] Ore S.: Oxidative stress relaxation of natural rubber vulcanized with di-tetriary-butyl peroxide. Acta Chem. Scand. 9 (1955) 1024–1026.
  • [24] Sies H., Berndt C., Jones D.P.: Oxidative stress. Annu. Rev. Biochem. 86 (2017) 715–748.
  • [25] Sarici G., Cinar S., Armutcu F., Altinyazar C., Koca R., Tekin N.S.: Oxidative stress in acne vulgaris. J. Europ. Acad. Dermatol. Venereol. 24 (2010) 763–767.
  • [26] Zouboulis C.C., Eady A., Philpott M., Goldsmith L.A., Orfanos C., Cunliffe W.C. et al.: What is the pathogenesis of acne? Exp. Dermatol. 2 (14) (2005) 143.
  • [27] Akamatsu H., Horio T., Hattori K.: Increased hydrogen peroxide generation by neutrophils from patients with acne inflammation. Int. J. Dermatol. 42 (2003) 366–369.
  • [28] Gupta M., Mahajan V.K., Mehta K.S., Chauhan P.S.: Zinc therapy in dermatology. A review. Dermatol. Res. Pract. (2014).
  • [29] Nitzan Y.B., Cohen A.D.: Zinc in skin pathology and care. J. Dermatolog. Treat. 17 (4) (2006) 205–210.
  • [30] Abd El-Megeed S., El-Sayed W.: The potential role of zinc oxide nanoparticles in the treatment of diabetes mellitus. An updated review. Zagazig Vet. J. 50 (2022) 37–51.
  • [31] da Silva B.L., Abuçafy M.P., Manaia E.B., Junior J.A.O., Chiari-Andréo B.G., Pietro R.C.L.R. et al.: Relationship between structure and antimicrobial activity of zinc oxide nanoparticles. An overview. Int. J. Nanomedicine 14 (2019) 9395–9410.
  • [32] Nair M.G., Samdarshi S.K., Anukaliani A., Nirmala M., Rekha K., Nair R.G.: Photocatalytic activity of ZnO nanopowders synthesized by DC thermal plasma. AJBAS 2 (2010) 161–166.
  • [33] Pino P., Bosco F., Mollea C., Onida B.: Antimicrobial nano-zinc oxide biocomposites for wound healing applications. A review. Pharmaceutics 15 (2023) 970.
  • [34] Sirelkhatim A., Mahmud S., Seeni A., Kaus N.H.M., Ann L.C., Bakhori S.K.M. et al.: Review on zinc oxide nanoparticles. Antibacterial activity and toxicity mechanism. Nanomicro. Lett. 7 (2015) 219–242.
  • [35] Kulkarni P., Ramakrishna K.: Biosynthesis of zinc oxide nanoparticles by endophytic fungi aspergillus niger and their potential antibacterial effects on propionibacterium acnes. J. Adv. Sci. Res. (2020).
  • [36] Wekwejt M., Michno A., Truchan K., Pałubicka A., Świeczko-Żurek B., Osyczka A.M. et al.: Antibacterial activity and cytocompatibility of bone cement enriched with antibiotic, nanosilver, and nanocopper for bone regeneration. Nanomaterials 8 (9) (2019) 114.
  • [37] Khan A., Alamry K.A.: Recent advances of emerging green chitosan- based biomaterials with potential biomedical applications. A review. Carbohydr. Res. 506 (2021) 108368.
  • [38] Svetlichnyi V., Shabalina A., Lapin I., Goncharova D., Nemoykina A.: ZnO nanoparticles obtained by pulsed laser ablation and their composite with cotton fabric. Preparation and study of antibacterial activity. Appl. Surf. Sci. 372 (2016) 20–29.
  • [39] Fan X., Yahia L., Sacher E.: Antimicrobial properties of the Ag, Cu nanoparticle system. Biology (Basel) 2 (10) (2021) 1–37.
  • [40] Alwan R.M., Kadhim Q.A., Sahan K.M., Ali R.A., Mahdi R.J., Kassim N.A et al.: Synthesis of zinc oxide nanoparticles via sol- -gel route and their characterization. Nanosci. Nanotechnol. 5 (2015) 1–6.
  • [41] Jurablu S., Farahmandjou M., Firoozabadi T.P.: Sol-gel synthesis of zinc oxide (ZnO) nanoparticles. Study of structural and optical properties. J. Sci. Islam. Repub. Iran 26 (2015) 281–285.
  • [42] Hasnidawani J.N., Azlina H.N., Norita H., Bonnia N.N., Ratim S., Ali E.S.: Synthesis of ZnO nanostructures using sol-gel method. Proc. Chem. 19 (2016) 211–216.
  • [43] Hebda M., Nykiel M., Szewczyk-Nykiel A.: Inżynieria spieków metalicznych i kompozytów. Podręcznik dla studentów kierunku zamawianego inżynieria materiałowa. Politechnika Krakowska (2013).
  • [44] Banerjee P., Chakrabarti S., Maitra S., Dutta B.K.: Zinc oxide nano- -particles. Sonochemical synthesis, characterization and application for photo-remediation of heavy metal. Ultrason. Sonochem. 19 (2012) 85–93.
  • [45] Stanković A., Dimitrijević S., Uskoković D.: Influence of size scale and morphology on antibacterial properties of ZnO powders hydrothemally synthesized using different surface stabilizing agents. Colloids Surf. B: Biointerfaces 102 (2013) 21–28.
  • [46] Hafez E.E., Hassan H.S., Elkady M.F., Salama E.: Assessment of antibacterial activity for synthesized zinc oxide nanorods against plant pathogenic strains. Int. J. Sci. Technol. Res. 3 (2014).
  • [47] Jalal R., Goharshadi E.K., Abareshi M., Moosavi M., Yousefi A., Nancarrow P.: ZnO nanofluids. Green synthesis, characterization, and antibacterial activity. Mater. Chem. Phys. 121 (2010) 198–201.
  • [48] Pavan Kumar M.A., Suresh D., Sneharani A.H.: Centella asiatica mediated facile green synthesis of nano zinc oxide and its photo- -catalytic and biological properties. Inorg. Chem. Commun. 133 (2021).
  • [49] Bandeira M., Giovanela M., Roesch-Ely M., Devine D.M., da Silva Crespo J.: Green synthesis of zinc oxide nanoparticles. A review of the synthesis methodology and mechanism of formation. Sustain. Chem. Pharm. 15 (2020) 100223.
  • [50] Agarwal H., Menon S., Venkat Kumar S., Rajeshkumar S.: Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route. Chem. Biol. Interact. 286 (2018) 60–70.
  • [51] Darvishi E., Kahrizi D., Arkan E.: Comparison of different properties of zinc oxide nanoparticles synthesized by the green (using Juglans regia L. leaf extract) and chemical methods. J. Molecul. Liq. 286 (2019).
  • [52] Agarwal H., Nakara A., Menon S., Shanmugam V.K.: Eco-friendly synthesis of zinc oxide nanoparticles using Cinnamomum Tamala leaf extract and its promising effect towards the antibacterial activity. J. Drug Deliver. Sci. Technol. 53 (2019).
  • [53] Ramani M., Ponnusamy S., Muthamizhchelvan C.: From zinc oxide nanoparticles to microflowers. A study of growth kinetics and biocidal activity. Mater. Sci. Eng. C 32 (2012) 2381–2389.
  • [54] Wahid F., Yin J.J., Xue D.D., Xue H., Lu Y.S., Zhong C. et al.: Synthesis and characterization of antibacterial carboxymethyl chitosan/ ZnO nanocomposite hydrogels. Int. J. Biol. Macromol. 88 (2016) 273–279.
  • [55] Bharathi D., Ranjithkumar R., Chandarshekar B., Bhuvaneshwari V.: Preparation of chitosan coated zinc oxide nanocomposite for enhanced antibacterial and photocatalytic activity. As a bionanocomposite. Int. J. Biol. Macromol. 129 (2019) 989–996.
  • [56] Alwan R.M., Kadhim Q.A., Sahan K.M., Ali R.A., Mahdi R.J., Kassim N.A et al.: Synthesis of zinc oxide nanoparticles via sol- -gel route and their characterization. Nanosci. Nanotechnol. 5 (2015) 1–6.
  • [57] Phan D.N., Rebia R.A., Saito Y., Kharaghani D., Khatri M., Tanaka T. et al.: Zinc oxide nanoparticles attached to polyacrylonitrile nanofibers with hinokitiol as gluing agent for synergistic antibacterial activities and effective dye removal. J. Ind. Eng. Chem. 85 (2020) 258–268.
  • [58] Pantano A., Parks D.M., Boyce M.C.: Mechanics of deformation of single- and multi-wall carbon nanotubes. J. Mech. Phys. Solids 52 (2004) 789–821.
  • [59] Ma S., Shibata K., Yokoi H.: Visualization analysis of reciprocating- screw plastication process of glass fiber-reinforced resins in a glass-inserted heating cylinder. Polym. Eng. Sci. 59 (2019) 846–853.
  • [60] Svetlichnyi V., Shabalina A., Lapin I., Goncharova D., Nemoykina A.: ZnO nanoparticles obtained by pulsed laser ablation and their composite with cotton fabric. Preparation and study of antibacterial activity. Appl. Surf. Sci. 372 (2016) 20–29.
  • [61] Schwan A.M., Chwatal S., Hendler C., Kopp D., Lackner J.M., Kaindl R. et al.: Morphology-controlled atmospheric pressure plasma synthesis of zinc oxide nanoparticles for piezoelectric sensors. Appl. Nanosci. (Switzerland) 13 (2023) 6421–6432.
  • [62] Chong W.J., Shen S., Li Y., Trinchi A., Pejak Simunec D., Kyratzis I. (Louis) et al.: Biodegradable PLA-ZnO nanocomposite biomaterials with antibacterial properties, tissue engineering viability, and enhanced biocompatibility. Smart Mater. Manuf. 1 (2023) 100004.
  • [63] Xiang X., Chen G., Chen K., Jiang X., Hou L.: Facile preparation and characterization of super tough chitosan/poly(vinyl alcohol) hydrogel with low temperature resistance and anti-swelling property. Int. J. Biol. Macromol. 142 (2020) 574–582.
  • [64] Al-Momani H., Massadeh M.I., Almasri M., Al Balawi D., Aolymat I., Hamed S. et al.: Anti-bacterial activity of green synthesised silver and zinc oxide nanoparticles against propionibacterium acnes. Pharmaceuticals 2 (17) (2024) 255.
  • [65] Khan A., Alamry K.A.: Recent advances of emerging green chitosan- based biomaterials with potential biomedical applications. A review. Carbohydr. Res. 506 (2021) 108368.
  • [66] Sarig-Nadir O., Seliktar D.: The role of matrix metalloproteinases in regulating neuronal and nonneuronal cell invasion into PEGylated fibrinogen hydrogels. Biomaterials 31 (2010) 6411–6416.
  • [67] Li C., Ye H., Ge S., Yao Y., Ashok B., Hariram N. et al.: Fabrication and properties of antimicrobial flexible nanocomposite polyurethane foams with in situ generated copper nanoparticles. J. Mater. Res. Technol. 19 (2022) 3603–3615.
  • [68] Das S.K., Parandhaman T., Dey M.D.: Biomolecule-assisted synthesis of biomimetic nanocomposite hydrogel for hemostatic and wound healing applications. Green Chem. 23 (2021) 629–669.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f692d2ee-53cd-4567-b67c-152a0d39f200
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.