PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Anode Modification with Reduced Graphene Oxide–Iron Oxide Improves Electricity Generation in Microbial Fuel Cell

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In recent years, much research has focused on energy recovery from biomass as an alternative to fossil fuel usage. Microbial fuel cells (MFCs), which produce electricity via microbial decomposition of organic matter, are of great interest. The performance of an MFC depends on the electrode material; most often, carbon materials with good electrical conductivity and durability are used. To increase the power output of an MFC, the anode material can be modified to reduce the internal resistance and increase the anode surface area. Therefore, this study determined how modifying a carbon felt anode with reduced graphene oxide (rGO) and a combination of rGO with iron (III) oxide (rGO-Fe) affected electricity generation in an MFC fueled with wastewater. A mixed microbial consortium was used as the anode biocatalyst. The MFC-rGO-Fe produced significantly higher voltages than other cells (average 109.4 ± 75.1 mV in the cycle). Power density curves indicated that modifying the anode with rGO-Fe increased the power of the MFC to 4.5 mW/m2, 9.3- and 3.9-times higher than that of the control MFC and the MFC-rGO, respectively. Anode modification reduced the internal resistance of the cells from 1029 Ω in the control MFC to 370 and 290 Ω in the MFC-rGO and MFC-rGO-Fe, respectively. These results show that a mixture of rGO with iron (III) oxide positively affects electricity production and can be successfully used for anode modification in the MFCs fueled with wastewater.
Rocznik
Strony
147--153
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
autor
  • Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 45G, 10-709 Olsztyn, Poland
  • Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 45G, 10-709 Olsztyn, Poland
Bibliografia
  • 1. Abdelkareem M.A., Al Ha Y., Alajami M., Alawadhi H., Barakat N.A. 2018. Ni-Cd carbon nanofibers as an effective catalyst for urea fuel cell. Journal of environmental chemical engineering, 6(1), 332–337.
  • 2. An J., Sim J., Lee H.S. 2015. Control of voltage reversal in serially stacked microbial fuel cells through manipulating current: significance of critical current density. Journal of Power Sources, 283, 19–23.
  • 3. Báez D.F., Pardo H., Laborda I., Marco J.F., Yáñez C., Bollo S. 2017. Reduced graphene oxides: influence of the reduction method on the electrocatalytic effect towards nucleic acid oxidation. Nanomaterials, 7(7), 168.
  • 4. Castro Neto A.H., Guinea F., Peres N.M.R., Novoselov K.S., Geim A.K. 2009. The electronic properties of graphene. Reviews of Modern Physics, 81(1), 109–162.
  • 5. Coelho M.A.Z., Russo C., Araujo O.Q.F. 2000. Optimization of a sequencing batch reactor for biological nitrogen removal. Water Research, 34(10), 2809–2817.
  • 6. Ghasemi M., Daud W.R.W., Hassan S.H., Oh S.E., Ismail M., Rahimnejad M., Jahim J.M. 2013. Nanostructured carbon as electrode material in microbial fuel cells: A comprehensive review. Journal of Alloys and Compounds, 580, 245–255.
  • 7. Gnana Kumar G., Kirubaharan C.J., Udhayakumar S., Ramachandran K., Karthikeyan C., Renganathan R., Nahm K.S. 2014. Synthesis, structural, and morphological characterizations of reduced graphene oxide-supported polypyrrole anode catalysts for improved microbial fuel cell performances. ACS Sustainable Chemistry & Engineering, 2(10), 2283–2290.
  • 8. Huang Y.X., Liu X.W., Xie J.F., Sheng G.P., Wang G.Y., Zhang Y.Y., Xu A.W., Yu H.Q. 2011. Graphene oxide nanoribbons greatly enhance extracellular electron transfer in bio-electrochemical systems. Chemical communications, 47(20), 5795–5797.
  • 9. Li X., Yu J., Wageh S., Al‐Ghamdi A.A., Xie J. 2016. Graphene in photocatalysis: a review. Small, 12(48), 6640–6696.
  • 10. Liu Q., Yang Y., Mei X., Liu B., Chen C., Xing D. 2018. Response of the microbial community structure of biofilms to ferric iron in microbial fuel cells. Science of the Total Environment, 631, 695–701.
  • 11. Ma J., Shi N., Jia J. 2020. Fe3O4 nanospheres decorated reduced graphene oxide as anode to promote extracellular electron transfer efficiency and power density in microbial fuel cells. Electrochimica Acta, 362, 137126.
  • 12. Mohan Y., Kumar S.M.M., Das D. 2008. Electricity generation using microbial fuel cells. International Journal of Hydrogen Energy, 33(1), 423–426.
  • 13. Nosek D., Jachimowicz P., Cydzik-Kwiatkowska A. 2020. Anode modification as an alternative approach to improve electricity generation in microbial fuel cells. Energies, 13(24), 6596.
  • 14. Pareek A., Shanthi Sravan J., Venkata Mohan S. 2019. Graphene modified electrodes for bioelectricity generation in mediator-less microbial fuel cell. Journal of Materials Science, 54(17), 11604–11617.
  • 15. Pendolino F., Armata N. 2017. Graphene oxide in environmental remediation process. Switzerland: Springer, 7, 11.
  • 16. Sayed E.T., Alawadhi H., Olabi A.G., Jamal A., Almahdi M.S., Khalid J., Abdelkareem M.A. 2021. Electrophoretic deposition of graphene oxide on carbon brush as bioanode for microbial fuel cell operated with real wastewater. International Journal of Hydrogen Energy, 46(8), 5975–5983.
  • 17. Tarcan R., Todor-Boer O., Petrovai I., Leordean C., Astilean S., Botiz I. 2020. Reduced graphene oxide today. Journal of Materials Chemistry C, 8(4), 1198–1224.
  • 18. Watson V.J., Logan B.E. 2011. Analysis of polarization methods for elimination of power overshoot in microbial fuel cells. Electrochemistry Communications, 13, 54–56.
  • 19. Yaqoob A.A., Ibrahim M.N.M., Yaakop A.S., Umar K., Ahmad A. 2021. Modified graphene oxide anode: A bioinspired waste material for bioremediation of Pb2+ with energy generation through microbial fuel cells. Chemical Engineering Journal, 417, 128052.
  • 20. Yu B., Li Y., Feng L. 2019. Enhancing the performance of soil microbial fuel cells by using a bentonite-Fe and Fe3O4 modified anode. Journal of hazardous materials, 377, 70–77.
  • 21. Yu W., Sisi L., Haiyan Y., Jie L. 2020. Progress in the functional modification of graphene/graphene oxide: A review. RSC advances, 10(26), 15328–15345.
  • 22. Zheng X., Hou S., Amanze C., Zheng Z., Weimin Z. 2022. Enhancing microbial fuel cell performance using anode modified with Fe3O4 nanoparticles. Bioprocess and Biosystems Engineering.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f690d4ab-f352-4376-97ee-9f91ac3ccf93
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.