Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents the results of experimental study of the AZ31 magnesium alloy milling process. Dry milling was carried out under high-speed machining conditions. First, a stability lobe diagram was determined using CutPro software. Next, experimental studies were carried out to verify the stability lobe diagram. The tests were carried out for different feed per tooth and cutting speed values using two types of tools. During the experimental investigations, cutting forces in three directions were recorded. The obtained time series were subjected to general analysis and analysis using composite multiscale entropy. Modelling and prediction were performed using Statistica Neural Network software, in which two types of neural networks were applied: multi-layered perceptron and radial basis function. It was observed that milling with high cutting speed values allows for component values of cutting force to be lowered as a result of the transition into the high-speed machining conditions range. In most cases, the highest values for the analysed parameters were recorded for the component Fx, whereas the lowest were recorded for Fy. Additionally, the paper shows that a prediction (with the use of artificial neural networks) of the components of cutting force can be made, both for the amplitudes of components of cutting force Famp and for root mean square Frms.
Czasopismo
Rocznik
Tom
Strony
art. no. e1, 2022
Opis fizyczny
Bibliogr. 32 poz., rys., wykr.
Twórcy
autor
- Department of Organisation of Enterprise, Management Faculty, Lublin University of Technology, Lublin, Poland
autor
- Department of Production Engineering, Mechanical Engineering Faculty, Lublin University of Technology, Lublin, Poland
autor
- Department of Applied Mechanics, Mechanical Engineering Faculty, Lublin University of Technology, Lublin, Poland
autor
- Department of Applied Mechanics, Mechanical Engineering Faculty, Lublin University of Technology, Lublin, Poland
autor
- Department of Production Engineering, Mechanical Engineering Faculty, Lublin University of Technology, Lublin, Poland
Bibliografia
- 1. Cus F, Zuperl U, Gecevska V. High-speed milling of light metals. J Achiev Mater Manuf Eng. 2007;24(1):357–64.
- 2. Zawada-Michalowska M, Jozwik J, Legutko S, Mika D, Pieśko P, Pytka J. Cutting force during surface layer milling of selected aluminium alloys. Materials. 2020;13:5725. https://doi.org/10.3390/ma13245725.
- 3. Weremczuk A, Kecik K, Rusinek R, Warminski J. The dynamics of the cutting process with duffing nonlinearity. Maint Reliability. 2013;15:209–13.
- 4. Danis I, Monies F, Lagarrigue P, Wojtowicz N. Cutting forces and their modelling in plunge milling of magnesium-rare earth alloys. Int J Adv Manuf Technol. 2016;84(9–12):1801–20. https://doi.org/10.1007/s00170-015-7826-3.
- 5. Zgórniak P, Stachurski W, Ostrowski D. Application of thermo-graphic measurements for the determination of the impact of selected cutting parameters on the temperature in the workpiece during milling process. J Mech Eng. 2016;62(11):657–64. https://doi.org/10.5545/sv-jme.2015.3259.
- 6. Zagórski I, Kuczmaszewski J. Temperature measurements in the cutting zone, mass, chip fragmentation and analysis of chip met-allography images during AZ31 and AZ91HP magnesium alloy milling. Aircr Eng Aerosp Technol. 2018;90(3):496–505. https://doi.org/10.1108/AEAT-12-2015-0254.
- 7. Kuczmaszewski J, Zagórski I. Methodological problems of temperature measurement in the cutting area during milling magnesium alloys. Manag Prod Eng Rev. 2013;4(3):26–33. https://doi.org/10.2478/mper-2013-0025.
- 8. Adamski W. Manufacturing development strategies in aviation industry. Adv Manuf Sci Technol. 2010;34(3):73–84.
- 9. Oczoś KE, Kawalec A. Kształtowanie stopów lekkich. Wyd. Naukowe PWN; Warsaw; 2012.
- 10. Zagórski I, Kulisz M. The influence of technological parameters on cutting force components in milling of magnesium alloys with PCD tools and prediction with artificial neural networks. In: Gapiński B, Szostak M, Ivanov V, editors. Advances in manufacturing II. Cham: Springer; 2019. (MANUFACTURING 2019. Lecture Notes in Mechanical Engineering).
- 11. Shi K, Zhang D, Ren J, Yao Ch, Huang X. Effect of cutting parameters on machinability characteristics in milling of magnesium alloy with carbide tool. Adv Mech Eng. 2016;8(1):1–9. https://doi.org/10.1177/1687814016628392.
- 12. Sivam SPSS, Bhat MDJ, Natarajan S, Chauhan N. Analysis of residual stresses, thermal stresses, cutting forces and other output responses of face milling operation on ZE41 Magnesium alloy. Int J Mod Manuf Technol. 2018;10(1):92–101.
- 13. Fu ZT, Yang WY, Wang XL, Leopold J. Analytical Modelling of Milling Forces for Helical End Milling Based on a Predictive Machining Theory. 15th CIRP Conference on Modelling of Machining Operations 2015;31:258-263.
- 14. Salguero J, Batista M, Calamaz M, Girot F, Marcos M. Cutting forces parametric model for the dry high speed contour milling of aerospace aluminium alloys. Procedia Eng. 2013;63:735–42. https://doi.org/10.1016/j.proeng.2013.08.215.
- 15. Kecik K, Borowiec M, Rusinek R. Verification of the stability lobes of Inconel 718 milling by recurrence plot applications and composite multiscale entropy analysis. Eur Phys J Plus. 2016;131:14. https://doi.org/10.1140/epjp/i2016-16014-x.
- 16. Weremczuk A, Rusinek R, Warminski J. The concept of active elimination of vibrations in milling process. Procedia CIRP. 2015;31:82–7. https://doi.org/10.1016/j.procir.2015.03.036.
- 17. Altintas Y, Stepan G, Merdol D, Dombovari Z. Chatter stability of milling in frequency and discrete time domain. CIRP J Manuf Sci Technol. 2008;1:35–44. https://doi.org/10.1016/j.cirpj.2008.06.003.
- 18. Litak G, Syta A, Rusinek R. Dynamical changes during composite milling: recurrence and multiscale entropy analysis. Int J Adv Manuf Technol. 2011;56:445–53. https://doi.org/10.1007/s00170-011-3195-8.
- 19. Bobrenkov OA, Khasawneh FA, Butcher EA, Mann BP. Analysis of milling dynamics for simultaneously engaged cutting teeth. J Sound Vib. 2010;329:585–606. https://doi.org/10.1016/j.jsv.2009.09.032.
- 20. Zagórski I, Kulisz M, Semeniuk A, Malec A. Artificial neural network modelling of vibration in the milling of AZ91D alloy. Adv Sci Technol Res J. 2017;11(3):261–9.
- 21. Weremczuk A, Rusinek R, Warminski J. Bifurcation and stability analysis of a nonlinear milling process. AIP Conference Proceedings 1922;100008. https://doi.org/10.1063/1.5019093.
- 22. Lipski J, Zaleski K. Optimisation of milling parameters using neural network. ITM Web Conference, 2017;15:01005. https://doi.org/10.1051/itmconf/20171501005.
- 23. Kilickap E, Yardimeden A, Celik YH. Mathematical modeling and optimization of cutting force, tool wear and surface roughness by using artificial neural network and response surface methodology in milling of Ti-6242S. Appl Sci. 2017;7(10):1064. https://doi.org/10.3390/app7101064.
- 24. Kazemi P, Khalid MH, Szlek J, Mirtic A, Reynolds G, Jachowicz R, Mendyk A. Computational intelligence modeling of granule size distribution for oscillating milling. Powder Technol. 2016;301:1252–8.
- 25. Kulisz M, Zagórski I, Semeniuk A. Artificial neural network modelling of cutting force components during AZ91HP alloy milling. Appl Comput Sci. 2016;12(4):49–58.
- 26. Wang J, Zou B, Liu M, et al. Milling force prediction model based on transfer learning and neural network. J Intell Manuf. 2020. https://doi.org/10.1007/s10845-020-01595-w.
- 27. Dai Y, Zheng X, Chen X, et al. A prediction model of milling force for aviation 7050 aluminum alloy based on improved RBF neural network. Int J Adv Manuf Technol. 2020;110:2493–501. https://doi.org/10.1007/s00170-020-06044-9.
- 28. Wiciak-Pikuła M, Felusiak A, Chwalczuk T, Twardowski P. Surface roughness and forces prediction of milling Inconel 718 with neural network. In: 2020 IEEE 7th International Workshop on Metrology for AeroSpace. Pisa: MetroAeroSpace; 2020. p. 260–4.
- 29. Kulisz M, Zagórski I, Korpysa J. The effect of abrasive waterjet machining parameters on the condition of Al-Si alloy. Materials. 2020;13(14):3122. https://doi.org/10.3390/ma13143122.
- 30. Wu SD, Wu CW, Kin SG, Wang KY, Lee KY. The series analysis using composite multiscale entropy. Entropy. 2013;15:1069–84.
- 31. Weremczuk A, Borowiec M, Rudzik M, Rusinek R. Stable and unstable milling process for nickel superalloy as abserved by recurrence plots and multiscale entropy. Eksploatacja i Niezawodność. 2018;20(2):318–26. https://doi.org/10.17531/ein.2018.2.19.
- 32. ISO 16220:2017—Magnesium and magnesium alloys—Magnesium alloy ingots and castings.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6904b66-7fc1-4c76-badd-c71438af8742