PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Economic development priorities of the EU and research directions – analysis of convergence and challenges in the construction sector

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Rozwój gospodarczy UE a kierunki badań naukowych – analiza konwergencji i wyzwania w sektorze budowlanym
Języki publikacji
EN PL
Abstrakty
EN
The article analyzes the alignment between the strategic goals of the European Union, as outlined in the European Green Deal, and the directions of scientific research in the field of sustainable construction. A qualitative comparative analysis was conducted of EU strategic documents and scientific publications from the Scopus database (2020-2024). Using the VOSviewer tool, five main thematic research clusters were identified: building materials, energy efficiency of buildings, urban planning, environmental assessment, and social aspects. In the field of materials, research is dominated by efforts to reduce the environmental impact of concrete, the use of waste and natural materials, geopolymers, and phase change materials. Regarding buildings and their life cycle, the analysis focuses on energy efficiency, integration of renewable energy sources, and digitalization. In the area of urban planning, studies focus on mitigating the urban heat island effect and urban pollution island through the use of green infrastructure in buildings. The analysis showed a high level of alignment between research and EU priorities, but also highlighted the need for deeper and broader analyses, particularly in the social domain. A research gap was identified in relation to sustainable buildings for agriculture.
PL
W artykule zaprezentowano zgodność pomiędzy strategicznymi celami Unii Europejskiej, wynikającymi z Europejskiego Zielonego Ładu, a kierunkami badań naukowych dotyczących zrównoważonego budownictwa. Przeprowadzono jakościową analizę porównawczą dokumentów strategicznych UE i publikacji naukowych z bazy Scopus (2020-2024). Za pomocą narzędzia VOSviewer zidentyfikowano pięć głównych tematów badań: materiały budowlane; efektywność energetyczna budynków; urbanistyka; ocena środowiskowa oraz aspekty społeczne. W obszarze materiałów dominują badania nad ograniczaniem wpływu betonu na środowisko, wykorzystaniem odpadów i materiałów naturalnych, geopolimerami, czy materiałami zmiennofazowymi. W przypadku budynków i ich cyklu życia, analiza koncentruje się na efektywności energetycznej budynków, integracji OZE i cyfryzacji. W obszarze urbanistyki prowadzone są badania dotyczące łagodzenia efektu miejskiej wyspy ciepła i miejskiej wyspy zanieczyszczenia przez zastosowanie zielonej infrastruktury budynków. Analiza wykazała dużą zgodność badań z unijnymi celami, ale wskazano potrzebę pogłębienia i poszerzenia analiz, szczególnie w obszarze społecznym. Wskazano lukę badawczą w odniesieniu do zrównoważonych budynków dla rolnictwa.
Słowa kluczowe
Rocznik
Tom
Strony
160--169
Opis fizyczny
Bibliogr. 40 poz., il., tab.
Twórcy
autor
  • AGH, Wydział Inżynierii Lądowej i Gospodarki Zasobami, Kraków
  • Politechnika Krakowska im. Tadeusza Kościuszki, Wydział Inżynierii Lądowej
Bibliografia
  • [1] European Commission, The European Green Deal. https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en, 2019.
  • [2] European Commission, “Buildings and construction”, https://single-market-economy.ec.europa.eu/industry/sustainability/buildings-and-construction_en.
  • [3] European Commission, “Renovation wave”. Accessed: Mar. 15, 2025. [Online]. Available: https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficient-buildings/renovation-wave_en.
  • [4] European Commission, A new Circular Economy Action Plan. 2020.
  • [5] European Commission, Fit for 55. 2021.
  • [6] European Parliament and Council of the European Union, Regulation (EU) 2021/1119 of the European Parliament and of the Council of 30 June 2021 establishing the framework for achieving climate neutrality and amending Regulations (EC) No 401/2009 and (EU) 2018/1999 (‘European Climate Law’). https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX-:32021R1119, 2021.
  • [7] European Commission, „Mechanizm sprawiedliwej transformacji: z myślą o wszystkich”, https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal/finance-and-green-deal/just-transition-mechanism_pl.
  • [8] Hassas N., et al., “The impact of goat hair as a natural animal fiber on properties of the lightweight cement composite”, Sci Rep, vol. 15, no. 1, 2025, DOI: 10.1038/s41598-025-91130-9.
  • [9] Kumar R., Karthik S., Kumar A., Tantri A., Shahaji, Sathvik S. “Machine learning approach for predicting the compressive strength of biomedical waste ash in concrete: a sustainability approach”, Discov Mater, vol. 5, no. 1, Dec. 2025, DOI: 10.1007/s43939-025-00223-9.
  • [10] Dicha H.M., Chaudhary S., Husain M.N., Krishnaraj R. “Banana fibre-reinforced diatomaceous earth slurry treatment of recycled aggregate for enhanced structural concrete performance”, Sci Rep, vol. 15, no. 1, 2025, DOI: 10.1038/s41598-024-84762-w.
  • [11] Ali T. et al., “Advanced and hybrid machine learning techniques for predicting compressive strength in palm oil fuel ash-modified concrete with SHAP analysis”, Sci Rep, vol. 15, no. 1, 2025, DOI: 10.1038/s41598-025-89263-y.
  • [12] Jing Y., Lee J.C., Moon W.C., Ng J.L., Yew M.K., Jin Y. “Durability and environmental evaluation of rice husk ash sustainable concrete containing carbon nanotubes”, Sci Rep, vol. 15, no. 1, 2025, DOI: 10.1038/s41598-025-88927-z.
  • [13] Onsongo S.K., Olukuru J., Munyao O.M., Mwabonje O. “The role of agricultural ashes (rice husk ash, coffee husk ash, sugarcane bagasse ash, palm oil fuel ash) in cement production for sustainable development in Africa”. Discover Sustainability, vol. 6, no. 1, 2025, DOI: 10.1007/s43621-025-00841-6.
  • [14] Sambucci M., Sibai A., Valente M. “Recent advances in geopolymer technology. A potential eco-friendly solution in the construction materials industry: A review”, Apr. 01, 2021, MDPI AG. DOI: 10.3390/jcs5040109.
  • [15] Shehata N., Al-Fitori O., Sayed E.T., Abdelkareem M.A., Olabi A. “Geopolymer concrete as green building materials: Recent applications, sustainable development and circular economy potentials”, Science of The Total Environment, vol. 836, p. 155577, 2022, DOI: 10.1016/j.scitotenv.2022.155577.
  • [16] Jwaida Z., Dulaimi A., Mashaan N., Othuman Mydin M.A. “Geopolymers: The Green Alternative to Traditional Materials for Engineering Applications,” Jun. 01, 2023, MDPI. DOI: 10.3390/infrastructures8060098.
  • [17] Enobie B., Okwandu A.C., Abdulwaheed S.A., Iwuanyanwu O. “Effective waste management in construction: Techniques and implementation,” International journal of applied research in social sciences, 2024, DOI: 10.51594/ijarss.v6i8.1390.
  • [18] Benjamin B.W., Lekshmi S., Nishaant Ha, Geordy R., Sudhakumar J. “A preface to agricultural wastes as sustainable construction material”. Mater Today Proc, 2023, DOI: 10.1016/j.matpr.2023.05.512.
  • [19] Wang X. “Recycling of various combustion/incineration residues into calcium sulfoaluminate cementitious material (CSA)”, Elsevier BV, 2024, pp. 219-245. DOI: 10.1016/b978-0-443-21536-0.00007-1.
  • [20] Huo D. “Exploring the Sustainable Role of Phase Change Energy Storage Materials in Construction Engineering”, Highlights in Science Engineering and Technology, vol. 106, pp. 286-292, 2024, DOI: 10.54097/p7gk6r55.
  • [21] Kadamba S., Blesson S., Rao A.U., Kamath M., Tantri A. “Mechanical, durability and microstructure properties of self-healing concrete utilizing agro-industrial waste: a critical review”, Journal of building pathology and rehabilitation, vol. 9, no. 2, 2024, DOI: 10.1007/s41024-024-00501-8.
  • [22] Su Y., Jin Q., Zhang S., He S. “A review on the energy in buildings: Current research focus and future development direction”, Jun. 30, 2024, Elsevier Ltd. DOI: 10.1016/j.heliyon.2024.e32869.
  • [23] Sowa S. “An improvement in the energetic efficiency of a building using daylight in the light control system”, in E3S Web of Conferences, EDP Sciences, Jul. 2018. DOI: 10.1051/e3sconf/20184500115.
  • [24] Anarene B. “Revolutionizing Energy Efficiency in Commercial and Institutional Buildings: A Complete Analysis”, International Journal of Scientific Research and Management (IJSRM), vol. 12, no. 09, pp. 7444-7468, Sep. 2024, DOI: 10.18535/ijsrm/v12i09.em12.
  • [25] Lopes M,B, et al., “A Numerical and Experimental Study to Compare Different IAQ-Based Smart Ventilation Techniques”, Buildings, vol. 14, no. 11, Nov. 2024, DOI: 10.3390/buildings14113555.
  • [26] Ji W., Chen C., Zhao B. “A comparative study of the effects of ventilation-purification strategies on air quality and energy consumption in Beijing, China”, Build Simul, vol. 14, no. 3, pp. 813-825, Jun. 2021, DOI: 10.1007/s12273-020-0694-2.
  • [27] Wu Q., et al., “Synergistic control of urban heat island and urban pollution island effects using green infrastructure”, Nov. 01, 2024, Academic Press. DOI: 10.1016/j.jenvman.2024.122985.
  • [28] Ugochukwu Kanayo Ashinze, Blessing Aibhamen Edeigba, Aniekan Akpan Umoh, Preye Winston Biu, and Andrew Ifesinachi Daraojimba, “Urban green infrastructure and its role in sustainable cities: A comprehensive review”, World Journal of Advanced Research and Reviews, vol. 21, no. 2, pp. 928-936, Feb. 2024, DOI: 10.30574/wjarr.2024.21.2.0519.
  • [29] Michalik-Śnieżek M., Adamczyk-Mucha K., Sowisz R., Bieske-Matejak A. “Green Roofs: Nature-Based Solution or Forced Substitute for Biologically Active Areas? A Case Study of Lublin City, Poland”, Sustainability (Switzerland) , vol. 16, no. 8, Apr. 2024, DOI: 10.3390/su16083131.
  • [30] Bhatt H., Devkota S., Shah S. “Sustainable Urban Planning and Green Infrastructure: A Symbiotic Relationship”, International Journal for Multidisciplinary Research, vol. 6, no. 6, Dec. 2024, [Online]. Available: www.ijfmr.com.
  • [31] Steffan I. “Sustainability and accessibility: The Design for All approach”, in Work, 2012, pp. 3888-3891. DOI: 10.3233/WOR-2012-0057-3888.
  • [32] Eisenberg Y., Heider A., Labbe D., Gould R., Jones R. “Planning accessible cities: Lessons from high quality barrier removal plans”, Cities, vol. 148, May 2024, DOI: 10.1016/j.cities.2024.104837.
  • [33] Nnaji C.C. “Sustainable Water Supply in Buildings Through Rooftop Rainwater Harvesting”, in The Construction Industry in the Fourth Industrial Revolution, W. Aigbavboa Clinton and Thwala, Ed., Cham: Springer International Publishing, 2020, pp. 390-400.
  • [34] Leon G., García P. “Sustainable water management in buildings, an affordable approach. Case Study: Terra Bio-Hotel Project, Medellín, Colombia”, 2014.
  • [35] Desai R., Maske P. “Sustainable Development Goal-Oriented Water Management for Smart Buildings in Smart Cities: An Automatic PLCBased Demand and Supply Approach”, Nov. 11, 2024. DOI: 10.21203/ rs.3.rs-5279760/v1.
  • [36] Ben-Amar W., Chang M.M., McIlkenny P. “Board Gender Diversity and Corporate Response to Sustainability Initiatives: Evidence from the Carbon Disclosure Project”, Journal of Business Ethics, vol. 142 (2), pp. 369-383, 2017, [Online]. Available: https://ro.uow.edu.au/buspapers/1396.
  • [37] Rahimian F.P., Goulding J.S., Arciszewski T. “Successful education of professionals for supporting future BIM implementation within the architecture engineering construction context”, 2017. [Online]. Available: https://api.semanticscholar.org/CorpusID:113548498
  • [38] Qi J., Mazumdar S., Vasconcelos A.C. “Understanding the Relationship between Urban Public Space and Social Cohesion: A Systematic Review”, International Journal of Community Well-Being, vol. 7, no. 2, pp. 155-212, Jun. 2024, DOI: 10.1007/s42413-024-00204-5.
  • [39] Akomea-Frimpong I., Jin X., Osei-Kyei R., Kukah A.S. “Public-private partnerships for sustainable infrastructure development in Ghana: a systematic review and recommendations”, Smart and Sustainable Built Environment, vol. 12, no. 2, pp. 237-257, Feb. 2023, DOI: 10.1108/SASBE-07-2021-0111.
  • [40] Diaz-Sarachaga J.M., Jato-Espino D., Alsulami B., Castro-Fresno D. “Evaluation of existing sustainable infrastructure rating systems for their application in developing countries”, Ecol Indic, vol. 71, pp. 491-502, Dec. 2016, DOI: 10.1016/j.ecolind.2016.07.033.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6904634-c6ca-46f0-89ce-a5913ff259f8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.