PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bubble loading profiles in a flotation column

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bubble loading is the mass of hydrophobic particles attached per unit surface area of air. This measure can be used in the design and analysis of flotation columns as a sign of true flotation. To date, however, this measurement has been limited to the pulp-froth interface, which only indicates the maximum bubble loading and does not reflect the progress of the loading process. This paper introduces the concept of bubble loading profile that summarizes measures of bubble loading at different heights of the collection zone in a flotation column. The effects of bubble size, particle size and collector dosage on the introduced profiles are also investigated. These operational variables changed the bubble loading profile from a linear to a curved trend. The curvatures in the profiles were near the place of the feeding port and therefore the collection zone was divided into two separate zones in terms of bubble loading characteristics. The zone below the feeding port often did not contribute much to the loading of particles on the bubbles and the loading phenomenon mostly took place above the feeding port. Behaviors of the profiles in these two zones were analyzed to reveal that a change in the feeding port placement or column height can, under some conditions, increase the overall bubble loading and thus, ultimately, the true flotation.
Rocznik
Strony
355--362
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
  • Mining Engineering Department, Tarbiat Modares University, Tehran, Iran
  • Mining Engineering Department, Tarbiat Modares University, Tehran, Iran
autor
  • Mining Engineering Department, Tarbiat Modares University, Tehran, Iran
Bibliografia
  • AHMED, N., JAMESON, G.J., 1985. The effect of bubble size on the rate of flotation of fine particles. International Journal of Mineral Processing, 14(3), 195-215.
  • BARBIAN, N., CILLIERS, J.J., MORAR, S.H., BRADSHAW, D.J., 2007. Froth imaging, air recovery and bubble loading to describe flotation bank performance. International Journal of Mineral Processing, 84(1), 81-88.
  • BRADSHAW, D.J., O’CONNOR, C.T., 1996. Measurement of the sub-process of bubble loading in flotation. Minerals Engineering, 9(4), 443-448.
  • DYER, C., 1995. An Investigation into the Properties of the Froth Phase in the Flotation Process. University of the Witwatersrand.
  • FALUTSU, M., DOBBY, G.S., 1992. Froth performance in commercial sized flotation columns. Minerals Engineering, 5(10-12), 1207-1223.
  • FINCH, J.A., DOBBY, G.S., 1990. Column Flotation. Pergamon Oxford.
  • HEMMATI-CHEGENI, M., ABDOLLAHY, M., KHALESI, M.R., 2015. Column flotation cell design by drift flux and axial dispersion models. International Journal of Mineral Processing, 145, 83-86.
  • HEMMATI-CHEGENI, M., ABDOLLAHY, M., KHALESI, M.R., 2016. Bubble loading measurement in a continuous flotation column. Minerals Engineering, 85, 49-54.
  • HASSANZADEH, A., HASSAS, B.V., KOUACHI, S., BRABCOVA, Z., CELIK, M.S., 2016. Effect of bubble size and velocity on collision efficiency in chalcopyrite flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 498, 258-267.
  • ITYOKUMBUL, M.T., 1992. A mass transfer approach to flotation column design. Chemical engineering science, 47(13), 3605-3612.
  • ITYOKUMBUL, M.T., 1993. Selection of recovery zone height in flotation column design. Chemical Engineering and Processing: Process Intensification, 32(2), 77-82.
  • GUNGOREN, C., OZDEMIR, O., OZKAN, S.G., 2017. Effects of temperature during ultrasonic conditioning in quartz-amine flotation. Physicochemical Problems of Mineral Processing, 53(2), 687-698.
  • GARIBAY, R.P., 2002. Effect of collection zone height and operating variables on recovery of overload flotation columns. Minerals Engineering, 15(5), 325-331.
  • GRAU, R.A., HEISKANEN, K., 2002. Visual technique for measuring bubble size in flotation machines. Minerals Engineering, 15(7), 507-513.
  • KING, R.P., HULBERT, D.G., HATTON, T.A., 1974. Bubble loading during flotation. Trans. Instn. Min. Metall. Vol C., C112-C115.
  • KOUACHI, S., HASSANZADEH, A., BOUHENGUEL, M., HASSAS, B.V., ÇELIK, M.S., 2015, Contribution of interceptional effect to collision efficiency of particle bubble encounter in flotation. In XVI Balkan Mineral Processing Congress, Belgrade-Serbia, 339-345.
  • KOUACHI, S., HASSAS, B.V., HASSANZADEH, A., ÇELIK, M.S., BOUHENGUEL, M., 2017. Effect of negative inertial forces on bubble-particle collision via implementation of Schulze collision efficiency in general flotation rate constant equation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 517, 72-83.
  • MALYSA, K., NG, S., CYMBALISTY, L., CZARNECKI, J., MASLIYAH, J., 1999. A method of visualization and characterization of aggregate flow inside a separation vessel, Part 1. Size, shape and rise velocity of the aggregates. International Journal of Mineral Processing, 55(3), 171-188.
  • MOYS, M.H., YIANATOS, J., LARENAS, J., 2010. Measurement of particle loading on bubbles in the flotation process. Minerals Engineering, 23(2), 131-136.
  • MAZAHERNASAB, R., AHMADI, R., 2016. Determination of bubble size distribution in a laboratory mechanical flotation cell by a laser diffraction technique. Physicochemical Problems of Mineral Processing, 52(2), 690-702.
  • NGUYEN, A.V., NALASKOWSKI, J., MILLER, J.D., 2003. A study of bubble–particle interaction using atomic force microscopy. Minerals Engineering, 16(11), 1173-1181.
  • PATIL, D.P., PAREKH, B.K. AND KLUNDER, E.B., 2010. A novel approach for improving column flotation of fine and coarse coal. International Journal of Coal Preparation and Utilization, 30(2-5), 173-188.
  • SEAMAN, D.R., FRANZIDIS, J.P., MANLAPIG, E.V., 2004. Bubble load measurement in the pulp zone of industrial flotation machines—a new device for determining the froth recovery of attached particles. International Journal of Mineral Processing, 74(1), 1-13.
  • RODRIGUES, R.T., RUBIO, J., 2003. New basis for measuring the size distribution of bubbles. Minerals Engineering, 16(8), 757-765.
  • RAHMAN, R.M., ATA, S., JAMESON, G.J., 2012. The effect of flotation variables on the recovery of different particle size fractions in the froth and the pulp. International Journal of Mineral Processing, 106, 70-77.
  • URIBE-SALAS, A., DE LIRA-GOMEZ, P., PEREZ-GARIBAY, R., NAVA-ALONSO, F., MAGALLANES-HERNANDEZ, L., LARA-VALENZUELA, C., 2003. Overloading of gas bubbles in column flotation of coarse particles and effect upon recovery. International Journal of Mineral Processing, 71(1), 167-178.
  • WILLS, B.A., FINCH, J.A., 2016. Chapter 12 - Froth Flotation. Wills' Mineral Processing Technology (Eighth Edition). BosMg: Butterworth-Heinemann.
  • FLINT, L.M., BURSTEIN, M.A., 2000. Froth processes and the design of column flotation cells. Academic Press, 1521-1527.
  • YIANATOS, J.B., ESPINOSA-GOMEZ, R., FINCH, J.A., LAPLANTE, A.R., DOBBY, G.S., 1988. Effect of column height on flotation column performance. Minerals and Metallurgical Process, 11-14.
  • YIANATOS, J., VINNETT, L., CARRASCO, C., ALVAREZ-SILVA, M., 2015. Effect of entrainment in bubble load measurement on froth recovery estimation at industrial scale. Minerals Engineering, 72, 31-35.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f68c8c70-e5f0-4c9c-ada3-ccc307afd02a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.