PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of Artificial Neural Networks in Modeling of Manufactured Front Metallization Contact Resistance for Silicon Solar Cells

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zastosowanie sztucznych sieci neuronowych w modelowaniu rezystancji kontaktu wytwarzanej przedniej metalizacji krzemowych ogniw słonecznych
Języki publikacji
EN
Abstrakty
EN
This paper presents the application of artificial neural networks for prediction contact resistance of front metallization for silicon solar cells. The influence of the obtained front electrode features on electrical properties of solar cells was estimated. The front electrode of photovoltaic cells was deposited using screen printing (SP) method and next to manufactured by two methods: convectional (1. co-fired in an infrared belt furnace) and unconventional (2. Selective Laser Sintering). Resistance of front electrodes solar cells was investigated using Transmission Line Model (TLM). Artificial neural networks were obtained with the use of Statistica Neural Network by Statsoft. Created artificial neural networks makes possible the easy modelling of contact resistance of manufactured front metallization and allows the better selection of production parameters. The following technological recommendations for the screen printing connected with co-firing and selective laser sintering technology such as optimal paste composition, morphology of the silicon substrate, co-firing temperature and the power and scanning speed of the laser beam to manufacture the front electrode of silicon solar cells were experimentally selected in order to obtain uniformly melted structure well adhered to substrate, of a small front electrode substrate joint resistance value. The prediction possibility of contact resistance of manufactured front metallization is valuable for manufacturers and constructors. It allows preserving the customers’ quality requirements and bringing also measurable financial advantages.
PL
Artykuł przedstawia zastosowanie sztucznych sieci neuronowych do predykcji rezystancji przedniej metalizacji w krzemowych ogniwach słonecznych. Oceniono wpływ tak wytworzonej elektrody przedniej na własności elektryczne ogniw fotowoltaicznych. Przednią elektrodę ogniw fotowoltaicznych naniesiono metodą sitodruku SP (ang. Screen Printing) i następnie wytwarzano dwoma metodami: konwencjonalną (1. wypalanie w piecu taśmowym) i niekonwencjonalną (2. selektywne spiekanie laserowe). Do wyznaczenia rezystancji elektrod przednich zastosowano metodę linii transmisyjnych TLM (ang. Transmission Line Model). Sztuczne sieci neuronowe zostały opracowane z wykorzystaniem pakietu Statistica Neural Network firmy Statsoft. Opracowane sztuczne sieci neuronowe umożliwią modelowanie rezystancji wytworzonej przedniej metalizacji i ułatwią lepszy dobór parametrów produkcji. Następujące zalecenia technologiczne sitodruku połączonego z wypalaniem w piecu i selektywnym spiekaniem laserowym takie jak optymalny skład pasty, morfologię podłoża krzemowego, temperaturę wypalania oraz moc i prędkość skanowania wiązki laserowej, do wytworzenia przedniej elektrody krzemowych ogniw słonecznych dobrano eksperymentalnie celem uzyskania celem uzyskania jednolicie stopionej struktury dobrze przylegającej do podłoża, małej wartości rezystancji połączenia elektrody przedniej z podłożem. Możliwość estymacji rezystancji przedniej metalizacji jest wartościowa dla producentów i konstruktorów. Pozwala ona na dotrzymanie wymagań klienta i przynosi wymierne zyski.
Twórcy
  • Department of Welding, Silesian University of Technology, 18A Konarskiego Str., 44-100 Gliwice, Poland
autor
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, 1Aa, Konarskiego Str., 44-100 Gliwice, Poland
Bibliografia
  • [1] L. A. Dobrzański, M. Musztyfaga, A. Drygała, Final manufacturing process of front side metallisation on silicon solar cells using convectional and unconventional techniques, Strojnicki Vestnik - Journal of Mechanical Engineering 59 3, 175-182 (2013).
  • [2] M. Musztyfaga, L. A. Dobrzański, S. Rusz, L. Prokop, S. Misak, Application of modern technique to set the paramaters of the monocrystalline solar cell and its structure, Electrotechnical Review, ISSN 0033-2097, R. 89 NR 11, p. 24-26 (2013).
  • [3] L. A. Dobrzański, M. Musztyfaga, A. Drygała, P. Panek, Investigation of the screen printed contacts of silicon solar cells from Transmissions Line Model, Journal of Achievements in Materials and Manufacturing Engineering, JAMME, 41 1-2, 57-65 (2010).
  • [4] L. A. Dobrzański, M. Musztyfaga, Effect of the front electrode metallisation process on electrical parameters of a silicon solar cell, Journal of Achievements in Materials and Manufacturing Engineering, 48/2, 2011, Issue 2, 115-144 (2011).
  • L. A. Dobrzański, M. Musztyfaga, A. Drygała, W. Kwaśny, P. Panek, Structure and electrical properties of screen printed contacts on silicon solar cells, Journal of Achievements in Materials and Manufacturing Engineering, JAMME, 45 2, 141-147 (2011).
  • [5] F. Clement, M. Menkoe, R. Hoenig, J. Haunschild, D. Biro, R. Preu, D. Lahmer, J. Lossen, H.J . Krokoszinski, Pilot-line processing of screen-printed Cz-Si MWT solar cells exceeding 17 % efficiency, Proceedings of Photovoltaic Specialists Conference (PVSC), 34th IEEE, 223-227 (2009).
  • [6] M. Burgelman, Thin film solar cells by screen printing technology. Proceedings of The Workshop Micro technology and Thermal Problems in Electronics, 129-135 (1998).
  • [7] J. P. Boyeaux, H. El. Omari, D. Sarti, A. Laugier, Towards an improvement of screen printed contacts in multicrystaline silicon solar cells, Proceedings of 11th European Photovoltaic Solar Energy Conference and Exhibition, 12-16 October, 1-4 (1992).
  • L. Gautero, M. Hofmann, J. Rentsch, A. Lemke, S. Mack, J. Seiffe, J. Nekarda, D. Biro, A. Wolf, B. Bitnar, J. M. Sallese, R. Preu, All-screen-printed 120-μm-thin large-area silicon solar cells applying dielectric rear passivation and laser-fired contacts reaching 18% efficiency, Proceedings of Photovoltaic Specialists Conference (PVSC), 34th IEEE, 1888-1893 (2009).
  • [8] P. Hacke, J. M. Gee, A screen-printed interdigitated back contact cells using a boron-source diffusion barrier, Solar Energy Materials and Solar Cells 88, p. 119-127(2005).
  • [9] M. M. Hilali, B. To, A. Rohatgi, A review and understanding of screen-printed contacts and selective-emitter formation, Conference paper – Workshop on crystalline silicon solar cells and modules, Winter Park, Colorado, 1-8 (2004).
  • [10] A. Mette, C. Schetter, D. Wissen, S. W. Glunz, G. Willeke, Increasing the efficiency of screen-printed silicon solar cells by light-induced silver plating, Proceedings of the 4th World Conference on Phtovoltaic Energy Conversion, Waikoloa, Hawaii, USA, 1056 (2006).
  • [11] M. Mohamend, J. M. Gee, P. Hacke, Bow in screen-printed back contact industrial silicon solar cells, Elsevier, Solar Energy and Solar cells 91(13), 1128-1233 (2007).
  • [12] W. Neu, A. Kress, W. Jooss, P. Fath, E. Bucher, Low-cost multicrystalline back-contact silicon solar cells with screen printed metallization, Solar Energy Materials and Solar Cells 74(1-4),139-146 (2002).
  • [13] H. El. Omari, J. P. Boyeaux, A. Laugier, Screen printed contacts formation by rapid thermal annealing in multicrystaline silicon solar cells, Proceedings of 25th PVSC, Washington, 585-588 (1996).
  • [14] H. Exner, P. Regnefuss, L. Hartwig, S. Klötzer, R. Ebert, Selective laser sintering with a Novel Process, Proceedings of 4th International Symposium on Laser Precision Microfabrication, Munich, 145-151 (2003).
  • [15] M. Alemán, A. Streek, P. Regenfuβ, A. Mette, R. Ebert, H. Exner, S.W. Glunz, G. Willeke, Laser micro-sintering as a new metallization technique for silicon solar cells. Proceedings of the 21st European Photovoltaic Solar Energy Conference, Dresden, Germany, 705 (2006).
  • [16] L. A. Dobrzański, R. Honysz, Artificial intelligence and virtual environment application for materials design methodology, Journal of Machine Engineering 11/1-2, 102-119 (2011).
  • [17] Markowska-Kaczmar U. (ed.), Neural networks in applications, Wrocław University of Technology publishing office, Wrocław, 1996, (in Polish).
  • [18] T. Masters, Neural networks in practice, PWN, Warsaw.
  • [19] W. S. McCulloch, A logical calculus of the ideas immanent in nervous activity, Bulletin of Mathematical BioPhysics 5, 115-133(1943).
  • [20] D. Rutkowska, M. Pilinski, L. Rutkowski, Neural networks, genetic algorithms and fuzzy systems, PWN, Warsaw, 1996, (in Polish).
  • [21] R. Tadeusiewicz, Elementary introduction for neural networks techniques with sample applications, Academic Publishing House PLJ, Warsaw, 1998, (in Polish).
  • [22] L. A. Dobrzański, R. Honysz, Application of artificial neural networks in modelling of normalised structural steels mechanical properties, Journal of Achievements in Materials and Manufacturing Engineering 32/,1 37-45 (2009).
  • [23] L. A. Dobrzański, R. Honysz, Application of artificial neural networks in modelling of quenched and tempered structural steels mechanical properties, Journal of Achievements in Materials and Manufacturing Engineering 40/1 50-57(2010).
  • [24] J. Żurada, M. Barski, W. Jedruch, Artificial neural networks. PWN, Warsaw, 1996, (in Polish).
  • [25] http://www.statsoft.pl/
Uwagi
EN
The authors thank Prof. L. A. Dobrzanski for valuable directions during implementation of this work
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f68b1e7a-fb35-40be-bdca-36931d1540df
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.