PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Above- and belowground habitat complexity created by emergent and submerged vegetation drives the structure of benthic assemblages

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The contrast in habitat complexity between emergent (EMV) and submerged vegetation (SUV) zones in aquatic ecosystems results from the differences in the structure of plant above- and belowground parts, subject to seasonal changes. Comparative studies on the influence of habitat complexity created by vegetation on benthic macroinvertebrates in coastal areas are scarce. In order to fill this knowledge gap, we performed a study on a seasonal basis in the brackish Vistula Lagoon (southern Baltic Sea) in two zones: EMV, dominated by a dense belt of Phragmites australis (Cav.) Trin. ex Steud, and SUV, with scattered stands of Potamogeton perfoliatus L. We assumed the following: i. Species richness, diversity, and density of invertebrates are higher in the EMV zone due to greater and less seasonally variable structural complexity than in the SUV zone, ii. High belowground complexity in the EMV zone due to the presence of the rhizome/root matrix, much more robust and denser than in the SUV zone limits the vertical distribution of macroinvertebrates. Both hypotheses were supported. Overall, our results pointing to higher animal diversity and density in more complex aquatic habitats are consistent with other studies, inferred mostly from comparative surveys of bare bottom and that covered with submerged vegetation. The results of this study highlight potentially far-reaching implications for benthic invertebrate fauna and their role in the aquatic ecosystem in the context of increasingly rapid loss of aquatic vegetation due to multiple anthropogenic stressors.
Czasopismo
Rocznik
Strony
358--370
Opis fizyczny
Bibliogr. 82 poz., map., rys., tab., wykr.
Twórcy
  • National Marine Fisheries Research Institute, Gdynia, Poland
  • National Marine Fisheries Research Institute, Gdynia, Poland
Bibliografia
  • 1. Armitage, P.D., Cranston, P.S., Pinder, L.C.V., 1995. The Chironomidae. Biology and ecology of non-biting midges. Chapman and Hall, Londyn-Madryt, 447 pp. https://doi.org/10.1007/978-94-011-0715-0
  • 2. Blott, S.J., Pye, K., 2001. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Proc. Land. 26, 1237-1248. https://doi.org/10.1002/esp.261
  • 3. Boström, C., Bonsdorff, E., 1997. Community structure and spatial variation of benthic invertebrates associated with Zostera marina (L) beds in the northern Baltic Sea. J. Sea Res. 37, 153-166. https://doi.org/10.1016/S1385-1101(96)00007-X
  • 4. Boström, C., Bonsdorff, E., 2000. Zoobenthic community establishment and habitat complexity - the importance of seagrass shoot-density, morphology and physical disturbance for faunal recruitment. Mar. Ecol. Prog. Ser. 205, 123-138. https://doi.org/10.3354/meps205123
  • 5. Brucet, S., Boix, D., Nathansen, L.W., Quintana, X.D., Jensen, E., Balayla, D., Meerhoff, M., Jeppesen, E., 2012. Effects of temperature, salinity and fish in structuring the macroinvertebrate community in shallow lakes: Implications for effects of climate change. Plos One 7. https://doi.org/10.1371/journal.pone.0030877
  • 6. Caffrey, J.M., Kemp, W.M., 1992. Influence of the submersed plant, Potamogeton perfoliatus, on nitrogen cycling in estuarine sediments. Limnol. Oceanogr. 37, 1483-1495. https://doi.org/10.4319/lo.1992.37.7.1483
  • 7. Cardoso, I., Granadeiro, J.P., Cabral, H., 2010. Benthic macroinvertebrates’ vertical distribution in the Tagus estuary (Portugal): The influence of tidal cycle. Estuar. Coast. Shelf S. 86, 580-586. https://doi.org/10.1016/j.ecss.2009.11.024
  • 8. Carpenter, S.R., Lodge, D.M., 1986. Effects of submersed macrophytes on ecosystem processes. Aquat. Bot. 26, 341-370. https://doi.org/10.1016/0304-3770(86)90031-8
  • 9. Como, S., Magni, P., Baroli, M., Casu, D., De Falco, G., Floris, A., 2008. Comparative analysis of macrofaunal species richness and composition in Posidonia oceanica, Cymodocea nodosa and leaf litter beds. Mar. Biol. 153, 1087-1101. https://doi.org/10.1007/s00227-007-0881-z
  • 10. Dauer, D.M., Ewing, R.M., Rodi, A.J., 1987. Macrobenthic distribution within the sediment along an estuarine salinity gradient. Int. Rev. Ges. Hydrobiol. 72, 529-538. https://doi.org/10.1002/iroh.19870720502
  • 11. Davis, R.B., 1974. Stratigraphic effects of tubificids in profundal lake sediments. Limnol. Oceanogr. 19, 466-488. https://doi.org/10.4319/lo.1974.19.3.0466
  • 12. Diehl, S., Kornijów, R., 1998. Influence of submerged macrophytes on trophic interactions among fish and macroinvertebrates. In: Jeppesen, E., Søndergaard, M., Søndergaard, M., Christoffersen, M. (Eds.), The structuring role of submerged macrophytes in lakes. Ecol. Stud 131. Springer, New York, 24-46. https://doi.org/10.1007/978-1-4612-0695-8_2
  • 13. Donnelly, A.P., Herbert, R.A., 1999. Bacterial interactions in the rhizosphere of seagrass communities in shallow coastal lagoons. J. Appl. Microbiol. 85, 151S-160S. https://doi.org/10.1111/j.1365-2672.1998.tb05294.x
  • 14. Evans, C.A., O’Reilly, J.E., 1983. A handbook for the measurement of chlorophyll a in netplankton and nannoplankton. In: Biomass handbook No.9. SCAR/SCOR/IABO/ACMRR Group of specialists on living resources of the southern oceans. SCAR, 44 pp.
  • 15. Fredriksen, S., De Backer, A., Bostrom, C., Christie, H., 2010. Infauna from Zostera marina L. meadows in Norway. Differences in vegetated and unvegetated areas. Mar. Biol. Res. 6, 189-200. https://doi.org/10.1080/17451000903042461
  • 16. González-Ortiz, V., Alcazar, P., Vergara, J.J., Pérez-Lloréns, J., Brun, F.G., 2014. Effects of two antagonistic ecosystem engineers on infaunal diversity. Estuar. Coast. Shelf S. 139, 20-26. https://doi.org/10.1016/j.ecss.2013.12.015
  • 17. González-Ortiz, V., Egea, L.G., Jiménez-Ramos, R., Moreno-Marin, F., Pérez-Lloréns, J., Bouma, T., Brun, F., 2016. Submerged vegetation complexity modifies benthic infauna communities: the hidden role of the belowground system. Mar. Ecol.-Evol. Persp. 37, 543-552. https://doi.org/10.1111/maec.12292
  • 18. Gonzalez, M.J., Burkart, G.A., 2004. Effects of food type, habitat, and fish predation on the relative abundance of two amphipod species, Gammarus fasciatus and Echinogammarus ischnus. J. Great Lakes Res. 30, 100-113. https://doi.org/10.1016/s0380-1330(04)70333-0
  • 19. Goshima, S., Peterson, C.H., 2012. Both below- and aboveground shoalgrass structure influence whelk predation on hard clams. Mar. Ecol. Prog. Ser. 451, 75-92. https://doi.org/10.3354/meps09587
  • 20. Gotelli, N.J., Colwell, R.K., 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4, 379-391. https://doi.org/10.1046/j.1461-0248.2001.00230.x
  • 21. Gotelli, N.J., Entsminger, G.L., 2009. EcoSim: Null models software for ecology, Version 7, Acquired Intelligence Inc. & Kesey-Bear. http://www.uvm.edu/∼ngotelli/EcoSim/EcoSim.html.
  • 22. Gotelli, N.J., Graves, G.R., 1996. Null models in ecology. Smithsonian Institution Press, Washington, D.C., 368 pp.
  • 23. Holomuzki, J.R., Hoyle, J.D., 1990. Effect of predatory fish presence on habitat use and diel movement of the stream amphipod, Gammarus minus. Freshwater Biol 24, 509-517. https://doi.org/10.1111/j.1365-2427.1990.tb00728.x
  • 24. Hoffman, C.E., 1940. The relation of Donacia larvae (Chrysomelidae: Coleophera) to dissolved oxygen. Ecol. Evol. 21, 176-183. https://doi.org/10.2307/1930484
  • 25. Huang, R., Zeng, J., Zhao, D.Y., Cook, K.V., Hambright, K.D., Yu, Z.B., 2020. Sediment microbiomes associated with the rhizosphere of emergent macrophytes in a shallow, subtropical lake. Limnol. Oceanogr. 65, S38-S48. https://doi.org/10.1002/lno.11325
  • 26. James, M.R., Weatherhead, M., Stanger, C., Graynoth, E., 1998. Macroinvertebrate distribution in the littoral zone of Lake Coleridge, South Island, New Zealand - effects of habitat stability, wind exposure, and macrophytes. New Zeal. J. Mar. Fresh. 32, 287-305. https://doi.org/10.1080/00288330.1998.9516826
  • 27. Janas, U., Kendzierska, H., 2014. Benthic non-indigenous species among indigenous species and their habitat preferences in Puck Bay (southern Baltic Sea). Oceanologia 56 (3), 603-628. https://doi.org/10.5697/oc.56-3.603
  • 28. Jeppesen, E., Søndergaard, M., Søndergaard, M., Christoffersen, K., 1998. The structuring role of submerged macrophytes in lakes. Springer, New York, 131 pp.
  • 29. Kajak, Z., 1988. Considerations on benthos abundance in fresh-waters, its factors and mechanisms. Int. Rev. Ges. Hydrobiol. 73, 5-19. https://doi.org/10.1002/iroh.19880730103
  • 30. Kajak, Z., Dusoge, K., 1971. The regularities of vertical distribution of benthos in bottom sediments of three Masurian lakes. Ekol. Pol. 19, 485-499.
  • 31. Kajak, Z., Warda, J., 1970. Food conditions for. Iarvae of Chironomidae in various layers of bottom sediments. Bull. Acad. Pol. Sci. 18, 193-196.
  • 32. Kangur, K., Timm, H., Timm, T., Timm, V., 1998. Long-term changes in the macrozoobenthos of Lake Võrtsjärv. Limnologica 28, 75-83.
  • 33. Kemp, W.M., Lewis, M.R., Jones, T.W., 1986. Comparison of methods for measuring production by the submersed macrophyte, Potamogeton perfoliatus L. Limnol. Oceanogr. 31, 1322-1334. https://doi.org/10.4319/lo.1986.31.6.1322
  • 34. Kemp, W.M., Murray, L., 1986. Oxygen release from roots of the submersed macrophyte Potamogeton perfoliatus L.: Regulating factors and ecological implications. Aquat. Bot. 26, 271-283. https://doi.org/10.1016/0304-3770(86)90027-6
  • 35. Kornijów, R., 1997. The impact of predation by perch on the size-structure of Chironomus larvae - The role of vertical distribution of the prey in the bottom sediments, and habitat complexity. Hydrobiologia 342, 207-213. https://doi.org/10.1023/A:1017067621668
  • 36. Kornijów, R., 2013. A new sediment slicer for rapid sectioning of the uppermost sediment cores from marine and freshwater habitats. J. Paleolimnol. 49, 301-304. https://doi.org/10.1007/s10933-012-9655-9
  • 37. Kornijów, R., 2018. Ecosystem of the Polish part of the Vistula Lagoon from the perspective of alternative stable states concept, with implications for management issues. Oceanologia 60 (3), 390-404. https://doi.org/10.1016/j.oceano.2018.02.004
  • 38. Kornijów, R., Dukowska, M., Leszczynska, J., Smith, C., Jeppesen, E., Hansson, L.A., Ketola, M., Irvine, K., Noges, T., Sahuquillo, M., Miracle, M.R., Gross, E., Kairesalo, T., van Donk, E., de Eyto, E., Garcia-Criado, F., Grzybkowska, M., Moss, B., 2021a. Distribution patterns of epiphytic reed-associated macroinvertebrate communities across European shallow lakes. Sci. Total Environ. 760. https://doi.org/10.1016/j.scitotenv.2020.144117
  • 39. Kornijów, R., Gulati, R.D., 1992. Macrofauna and its ecology in Lake Zwemlust, after biomanipulation. I. Bottom fauna. Arch. Hydrobiol. 123, 337-347.
  • 40. Kornijów, R., Moss, B., 1998. Vertical distribution of in-benthos in relation to fish and floating-leaved macrophyte populations, in: Jeppesen, E., Søndergaard, M., Søndergaard, M., Christoffersen, K. (Eds.), The structuring role of submerged macrophytes in lakes. Ecol. Stud 131. Springer, New York, 227-232. https://doi.org/10.1007/978-1-4612-0695-8_12
  • 41. Kornijów, R., Pawlikowski, K., Bł˛edzki, L.A., Drgas, A., Piwosz, K., Ameryk, A., Całkiewicz, J., 2021b. Co-occurrence and potential resource partitioning between oligochaetes and chironomid larvae in a sediment depth gradient. Aquat. Sci. 83 (51), 1-10. https://doi.org/10.1007/s00027-021-00800-z
  • 42. Kristensen, E., Penha-Lopes, G., Delefosse, M., Valdemarsen, T., Quintana, C.O., Banta, G.T., 2012. What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Mar. Ecol. Prog. Ser. 446, 285-302. https://doi.org/10.3354/meps09506
  • 43. Lellak, J., 1965. The food supply as a factor regulating the population dynamics of bottom animals. Verh. Int. Ver. Theor. Angew. Limnol. 13, 128-138.
  • 44. Levin, S.A., 1992. The problem of pattern and scale in ecology. Ecology 73, 1943-1967. https://doi.org/10.2307/1941447
  • 45. Liu, W.Z., Jiang, X.L., Zhang, Q.F., Li, F., Liu, G.H., 2018. Has submerged vegetation loss altered sediment denitrification, N2 O production, and denitrifying microbial communities in subtropical lakes? Global Biogeochem. Cy. 32, 1195-1207. https://doi.org/10.1029/2018gb005978
  • 46. Magni, P., Como, S., Kamijo, A., Montani, S., 2017. Effects of Zostera marina on the patterns of spatial distribution of sediments and macrozoobenthos in the boreal lagoon of Furen (Hokkaido, Japan). Mar. Environ. Res. 131, 90-102. https://doi.org/10.1016/j.marenvres.2017.09.013
  • 47. Meerhoff, M., González-Sagrario, M.A., 2021. Habitat complexity in shallow lakes and ponds: importance, threats, and potential for restoration. Hydrobiologia https://doi.org/10.1007/s10750-021-04771-y
  • 48. Mermillod-Blondin, F., 2011. The functional significance of bioturbation and biodeposition on biogeochemical processes at the water-sediment interface in freshwater and marine ecosystems. J. N. Am. Benthol. Soc. 30, 770-778. https://doi.org/10.1899/10-121.1
  • 49. Meyerson, L.A., Cronin, J.T., Pysek, P., 2016. Phragmites australis as a model organism for studying plant invasions. Biol. Invasions 18, 2421-2431. https://doi.org/10.1007/s10530-016-1132-3
  • 50. Milbrink, G., 1973. On the vertical distribution of oligochaetes in lake sediments. Institute for Freshwater Research, Drottningholm, 34-50.
  • 51. Morris, K., Bailey, P.C., Boon, P.I., Hughes, L., 2003. Alternative stable states in the aquatic vegetation of shallow urban lakes. II. Catastrophic loss of aquatic plants consequent to nutrient enrichment. Mar. Freshwater Res. 54, 201-215. https://doi.org/10.1071/mf02003
  • 52. Mrozińska, N., Glińska-Lewczuk, K., Obolewski, K., 2021. Salinity as a key factor on the fenthic fauna diversity in the coastal lakes. Animals 11, 3039. https://doi.org/10.3390/ani11113039
  • 53. Newrkla, P., Wijegoonawardana, N., 1987. Vertical distribution and abundance of benthic invertebrates in profundal sediments of Mondsee, with special reference to Oligochaetes. Hydrobiologia 155, 227-234. https://doi.org/10.1007/Bf00025655
  • 54. Orth, R.J., 1977. The importance of sediment stability in seagrass communities. In: Coull, B.C. (Ed.), Ecology of Marine Benthos. University of South Carolina Press, Columbia, 281-300.
  • 55. Ostendorp, W., 1989. Die-back’ of reeds in Europe: a critical review of literature. Aquat. Bot. 35, 5-26. https://doi.org/10.1016/0304-3770(89)90063-6
  • 56. Ozimek, T., Prejs, A., Prejs, K., 1976. Biomass and distribution of underground parts of Potamogeton perfoliatus L. and P. lucens L. in Mikołajskie Lake. Poland. Aquat. Bot. 2, 309-316. https://doi.org/10.1016/0304-3770(76)90028-0
  • 57. Pawlikowski, K., Kornijów, R., 2019. Role of macrophytes in structuring littoral habitats in the Vistula Lagoon (southern Baltic Sea). Oceanologia 61 (1), 26-37. https://doi.org/10.1016/j.oceano.2018.05.003
  • 58. Persson, A., Svensson, J.M., 2006. Vertical distribution of benthic community responses to fish predators, and effects on algae and suspended material. Aquat. Ecol. 40, 85-95. https://doi.org/10.1007/s10452-005-9014-2
  • 59. Peterson, C.H., 1982. Clam predation by whelks (Busycon spp.): Experimental tests of the importance of prey size, prey density, and seagrass cover. Mar. Biol. 66, 159-170. https://doi.org/10.1007/Bf00397189
  • 60. Phillips, G., Willby, N., Moss, B., 2016. Submerged macrophyte decline in shallow lakes: What have we learnt in the last forty years? Aquat. Bot. 135, 37-45. https://doi.org/10.1016/j.aquabot.2016.04.004
  • 61. Pieczyńska, E., 1993. Detritus and nutrient dynamics in the shore zone of lakes - a review. Hydrobiologia 251, 49-58. https://doi.org/10.1007/Bf00007164
  • 62. PRIMER-E Ltd, 2007. PRIMER 6 software. 6.1.9. http://www.primer-e.com
  • 63. Rodil, I.F., Cividanes, S., Lastra, M., Lopez, J., 2008. Seasonal variability in the vertical distribution of benthic macrofauna and sedimentary organic matter in an estuarine beach (NW spain). Estuar. Coast. 31, 382-395. https://doi.org/10.1007/s12237-007-9017-4
  • 64. Rodil, I.F., Lohrer, A.M., Attard, K.M., Hewitt, J.E., Thrush, S.F., Norkko, A., 2021. Macrofauna communities across a seascape of seagrass meadows: environmental drivers, biodiversity patterns and conservation implications. Biodivers. Conserv. 30, 3023-3043. https://doi.org/10.1007/s10531-021-02234-3
  • 65. Ságová-Marečková, M., 2002. Distribution of benthic macroinvertebrates in relationship to plant roots, sediment type and spatial scale in fishponds and slow streams. Arch. Hydrobiol. 156, 63-81. https://doi.org/10.1127/0003- 9136/2002/0156- 0063
  • 66. Ságová, M., Adams, M.S., Butler, M.G., 1993. Relationship between plant-roots and benthic animals in three sediment types of a dimictic mesotrophic lake. Arch. Hydrobiol. 128, 423-436.
  • 67. Siebert, T., Branch, G.M., 2005. Interactions between Zostera capensis, Callianassa kraussi and Upogebia africana: deductions from field surveys in Langebaan Lagoon, South Africa. Afr. J. Mar. Sci. 27, 345-356. https://doi.org/10.2989/18142320509504094
  • 68. Siebert, T., Branch, G.M., 2007. Influences of biological interactions on community structure within seagrass beds and sandprawn-dominated sandflats. J. Exp. Mar. Biol. Ecol. 340, 11-24. https://doi.org/10.1016/j.jembe.2006.08.007
  • 69. StatSoft, 2011. Statistica software version 10. StatSoft Inc https://doi.org/http://www.statsoft.com
  • 70. Sueiro, M.C., Bortolus, A., Schwindt, E., 2011. Habitat complexity and community composition: relationships between different ecosystem engineers and the associated macroinvertebrate assemblages. Helgoland Mar. Res. 65, 467-477. https://doi.org/10.1007/s10152-010-0236-x
  • 71. Takamura, N., Ito, T., Ueno, R., Ohtaka, A., Wakana, I., Nakagawa, M., Ueno, Y., Nakajima, H., 2009. Environmental gradients determining the distribution of benthic macroinvertebrates in Lake Takkobu, Kushiro wetland, northern Japan. Ecol. Res. 24, 371-381. https://doi.org/10.1007/s11284-008-0514-0
  • 72. Touhami, F., Bazairi, H., Badaoui, B., Benhoussa, A., 2018. Vertical distribution of benthic macrofauna in intertidal habitats frequented by shorebirds at Merja Zerga Lagoon. Thalassas 34, 255-265. https://doi.org/10.1007/s41208-017-0059-5
  • 73. Van de Bund, W.J., Groenendijk, D., 1994. Seasonal dynamics and burrowing of littoral Chironomid larvae in relation to competition and predation. Arch. Hydrobiol. 132, 213-225.
  • 74. Vaughn, C.C., 1982. Distribution of chironomids in the Littoral-Zone of Lake Texoma, Oklahoma and Texas. Hydrobiologia 89, 177-188. https://doi.org/10.1007/Bf00006170
  • 75. Vidal, N., Yu, J.L., Gutierrez, M.F., de Mello, F.T., Tavsanoglu, U.N., Cakiroglu, A.I., He, H., Meerhoff, M., Brucet, S., Liu, Z.W., Jeppesen, E., 2021. Salinity shapes food webs of lakes in semiarid climate zones: a stable isotope approach. Inland Waters 11, 445-456. https://doi.org/10.1080/20442041.2020.1859290
  • 76. Webster, P.J., Rowden, A.A., Attrill, M.J., 1998. Effect of shoot density on the infaunal macro-invertebrate community within a zostera marina seagrass bed. Estuar. Coast. Shelf Sci. 47, 351-357. https://doi.org/10.1006/ecss.1998.0358
  • 77. Weisner, S.E.B., Strand, J.A., 1996. Rhizome architecture in Phragmites australis in relation to water depth: Implications for within-plant oxygen transport distances. Folia Geobot. Phytotx. 31, 91-97. https://doi.org/10.1007/bf02803998
  • 78. Whitlatch, R.B., 1980. Patterns of resource utilization and coexistence in marine inter-tidal deposit-feeding communities. J. Mar. Res. 38, 743-765.
  • 79. Wolfer, S.R., Straile, D., 2004. Spatio-temporal dynamics and plasticity of clonal architecture in Potamogeton perfoliatus. Aquat. Bot. 78, 307-318. https://doi.org/10.1016/j.aquabot.2003.11.005
  • 80. Wolnomiejski, N., 1994. Ecological study on muddy bottom macrofauna of the Szczecin Lagoon (1982-1992). Studia i Materiały, Marine Fisheries Institute, Gdynia ser. A, 31, Gdynia, 126 pp., (in Polish).
  • 81. Wolnomiejski, N., Furyk, A., 1968. The vertical distribution of the bottom fauna in the sediments of the littoral zone of Jeziorak Lake. Zesz. Nauk. UMK w Toruniu, Nauki Mat.-Przyr., Prace Stacji Limnologicznej w Iławie 20, 31-45.
  • 82. Zhang, Y.L., Jeppesen, E., Liu, X.H., Qin, B.Q., Shi, K., Zhou, Y.Q., Thomaz, S.M., Deng, J.M., 2017. Global loss of aquatic vegetation in lakes. Earth-Sci. Rev. 173, 259-265. https://doi.org/10.1016/j.earscirev.2017.08.013
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023). (PL)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f6892f7e-3da1-428f-804b-912209f48f4a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.